## Training session Pulsation & Vibration Control June 26<sup>th</sup> - 27<sup>th</sup> 2019

Delft, The Netherlands

Leonard van Lier, Lennert Buijs



**Wijnand Schoemakers** 



**EFRC** 

EUROPEAN FORUM

for RECIPROCATING COMPRESSORS

### **Vibrations**

- Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point.
- Vibrations may lead to fatigue failure and consequentially:
  - unsafe situations
  - lost of capacity
  - increase in maintenance
  - repair costs



#### **EFRC Vibrations EUROPEAN FORUM** Fluid Structure Interaction for **RECIPROCATING** (2-way coupling) COMPRESSORS Pulsation source i.e. excitation mechanism Discharg Connecting rod Crosshead Pulsations Discharge valve Acoustic response / Transmission Crankshaft Suction valve Suction Pulsation forces Vibrations Structural response / Resonance Flow Structure Interaction (aero- and hydrodynamic forces)

Training Session "Pulsation & Vibration Control"

### Vibrations

- Vibration types
- Description of vibrations
- Vibration sources
- Evaluation of vibrations
- Vibration Mitigation
  - Analyses
  - In practice
- Basic guidelines









- Harmonic Vibrations
  - Vibration of which the amplitude is a sine
  - Can only occur when the excitation force exists of only one frequency component
- Non-harmonic vibrations:
  - The result of two or more added harmonic vibrations with different frequencies

### **Vibration types**

- Harmonic Vibrations
  - Vibration of which the amplitude is a sine
  - Can only occur when the excitation force exists of only one frequency component
- Non-harmonic vibrations:
  - The result of two or more added harmonic vibrations with different frequencies





### **Vibration types**



- Transient vibration:
  - the response of a system to a sudden change from an equilibrium or a steady state (start/stop of a machine, severe slugging, opening of a relief valve, etc.)
- Steady-state vibration
  - the behavior of a mechanical system after a time when steady conditions have been reached after a transient excitation



#### **Vibrations**



- Vibration types
- Description of vibrations
- Vibration sources
- Evaluation of vibrations
- Vibration Mitigation
  - Analyses
  - In practice
- Basic guidelines



- $x = \hat{x} \sin(\omega t + \varphi)$
- Amplitude  $(\hat{x})$ :
- Angular velocity ( $\omega$ ):
- Phase angle( $\varphi$ ):
- Period (T):
- Frequency (f):

The maximum value of the sine over one period 2p times the frequency f the argument of the sine function as follows:

the time T is the time after which the vibration repeats number of periods in 1 seconds (f = 1/T) [Hz]

#### **Vibrations - Single degree of freedom system**

- General equation of motion of a SDOF
- $m\ddot{x} + c\dot{x} + kx = Fe^{j\omega t}$
- With:
- x displacement,  $\dot{x}$  velocity,  $\ddot{x}$  acceleration
- *m* mass, *c* viscous damping, *k* spring stiffness
- F excitation force,  $j = \sqrt{-1}$ ,  $\omega$  excitation frequency





#### **Vibrations – Free undampened vibrations**

Solving the equation from previous slide, with

• c = 0, F = 0

- $\omega_0 = \sqrt{k/m} \rightarrow$  Mechanical Natural Frequency (MNF)
- Mode shape (eigen vector):
  - is the ratio of the amplitudes at various points;
  - represents a deformation pattern of the structure for the corresponding natural frequency.



# EFRC

#### EUROPEAN FORUM for RECIPROCATING COMPRESSORS

#### **Vibrations – Free damped vibrations**

• Solving the equation from previous slide, with

• 
$$c \neq 0, F = 0$$

• 
$$\omega_d = \omega_0 \sqrt{1 - \zeta^2}$$
  $\rightarrow$  Damped natural frequency

• Damping ratio, related to the critical damping:

• 
$$\zeta = \frac{c}{c_c} = \frac{c}{2\sqrt{km}}$$

#### **Vibrations – Possible solutions**

- Solutions for  $\zeta = 0$ :
  - undamped vibrations at the natural frequency of the system
- Solutions for  $0 < \zeta < 1$ :
  - underdamped case
- Solutions for  $\zeta = 1$ :
  - critically damped case
- Solutions for  $\zeta > 1$ :
  - overdamped case



Vibrations as a function of time and damping ratio ζ

EFRC

#### **Vibrations – Forced vibrations**

• General equation of motion of a SDOF

•  $m\ddot{x} + c\dot{x} + kx = Fe^{j\omega t}$ 

• Steady state solution:

• 
$$x = \left[\frac{1}{\sqrt{(1 - (\omega/\omega_0)^2)^2 + (2\zeta(\omega/\omega_0))^2}}\right] \frac{F}{k} e^{j(\omega t - \theta)}$$

• Proportionality factor:

• 
$$H(\omega) = \left[\frac{1}{\sqrt{(1-(\omega/\omega_0)^2)^2 + (2\zeta(\omega/\omega_0))^2}}\right]$$







#### **Vibrations - Resonances**

• If excitation frequency  $\omega = \omega_0 \rightarrow$  resonance

• 
$$\omega_d = \omega_0 \sqrt{1 - \zeta^2}$$

• 
$$H(\omega) = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

• For light damping ( $\zeta < 5\%$ ), the magnification is:

• 
$$H(\omega) = \frac{1}{2\zeta}$$
  $\rightarrow$  for  $\zeta = 2\%$ ,  $H(\omega) = 25!$ 



**EFRC** 

#### **Vibrations**



- Vibration types
- Description of vibrations
- Vibration sources
- Evaluation of vibrations
- Vibration Mitigation
  - Analyses
  - In practice
- Basic guidelines

#### **Vibration sources**

Discharge

Piston

Suction valve

Suction

Crosshead

- Pressure pulsation induced forces
  - Compressor pulses
  - FIP sources
  - Flow transients / pressure surge
- Multiphase flow induced forces
- Mechanically induced/transferred
  - Compressor free forces and moments



COMPRESSORS

Connecting rod

Crankshaft

#### **Vibrations – Forcing in pipe systems**

- Pressure pulsation induced forces act on locations with:
  - Diameter changes
  - Change in pipe direction
- Elbows, reducers, caps, T-pieces



#### EFRC EUROPEAN FORUM for RECIPROCATING COMPRESSORS

20

 $\uparrow \uparrow _{\rightarrow} F = P_{dyn} \cdot \frac{\pi}{4} D^2$ 

 $F = P_{dyn} \cdot \frac{\pi}{4} \left( D_2^2 - D_1^2 \right)$ 



EUROPEAN FORUM for RECIPROCATING COMPRESSORS

- Design:
  - API 618 5th edition
  - API 688 in future
- In field:
  - ISO 20816-8 (Measurement and evaluation of machine vibration - Part 8: Reciprocating compressor systems)

Many more standards, like AVIFF, VDI, etc.





- Different norms/standards have different allowable levels:
  - RMS
  - Amplitude
  - PkPk
  - Crest Factor

$$CF = X_a / X_{RMS}$$



- Different norms/standards have different allowable levels:
  - RMS
  - Amplitude

• PkPk

Crest Factor

 $CF = X_a / X_{RMS}$ 





- Different norms/standards have different allowable levels:
  - RMS
  - Amplitude
  - PkPk
  - Crest Factor

 $CF = X_a / X_{RMS}$ 







for RECIPROCATING COMPRESSORS

#### **Vibrations**



- Vibration types
- Description of vibrations
- Vibration sources
- Evaluation of vibrations
- Vibration Mitigation
  - Analyses
  - In practice
- Basic guidelines

## Vibrations

• Typical steps in a mechanical analysis of pipe systems



#### Vibrations – non-resonance system

- Non-resonance systems will have acceptable vibration and cyclic stress levels → no fatigue failure
- To achieve non-resonant systems:
  - Maximum pipe supports span shall be such that frequency of dominant forces shall not coincide within a range of  $\pm 20\%$  with MNF's ( $\omega \neq \omega_0$ )
  - Number of pipe supports can be considerable, especially for small pipes and high speed machines



## Vibrations – non-resonance system

- Most effective way: achieving a system which will not be excited in its resonance conditions: called non-resonant system (acceptable vibration and cyclic stress levels)
- Non-resonant systems are in general very difficult to achieve in reality due to:
  - Too flexible supporting structures
  - No stiff structures in the vicinity to mount pipe supports
  - Variable speed compressors and pumps (several MNF's in speed range)



for RECIPROCATING COMPRESSORS

#### Vibrations





| Mode   | Frequency | Frequency |
|--------|-----------|-----------|
| shape  | [Hz]      | [Hz]      |
| Number | Without   | Racks     |
|        | Rack      | included  |
| 1      | 19.9      | 12.8      |
| 2      | 25.1      | 18.6      |
| 3      | 26.3      | 19.1      |
| 4      | 28.2      | 20.5      |
| 5      | 28.7      | 24.2      |



- Possibilities:
  - Add pipe supports
  - Increase steel structure stiffness (braces)
  - Change masses
  - Viscous dampers
  - Tuned Mass Damper (TMD)
  - Constrained layer damping
  - Change source strength / frequency



EUROPEAN FORUM for RECIPROCATING COMPRESSORS

change MNF of system

### **Vibrations – pipe supports**

- Connection of pipe with (steel) structure shall be suitable to restrain the dynamic loads
- Support layout is in general optimised to allow thermal expansion → flexible system required:
- This is in conflict with a "dynamic" design to keep vibrations acceptable







- Typical applied supports in thermal design:
- Spring hangers
  - Are very flexible elements which lead in general to very low MNF's and unacceptable pipe vibrations
- Rest type supports
  - not always able to restrain the dynamic loads if:
    - friction force between support and support structure is too small
    - extreme case: pipe is lifted-off (happens often during start-up due to thermal expansion)







Typical spring hanger support





- Preferred supports:
  - Rigid Clamp (U-bolt is not rigid enough)
    - can introduce too high expansion stress
  - Spring hold down support
    - allows thermal expansion and restrain dynamic loads (enough friction)



Examples of rigid clamp supports



Examples of spring hold down supports



Design parameters for spring hold down supports:

Support

Supporting

structure

Preload per bolt:  $F_n$  / number of bolts •

- Slot length: > thermal expansion •
- f (friction coefficient): •
  - steel-steel  $\approx 0.3$ •
  - steel-teflon  $\approx 0.1$  (F<sub>n</sub> teflon = 3 x F<sub>n</sub> steel !) •

0.5x



for RECIPROCATING COMPRESSORS





- Increase steel structure stiffness
- Braces
- Correct orientation of beams
- This methodology is not always effective for vibrations at high frequencies:
  - Structure can become in resonance and does not add to the stiffness.







for RECIPROCATING COMPRESSORS

- Viscous dampers:
- Require very stiff steel structure to restrain damping force.
- Advantages:
  - high damping ratio
  - works in 3 directions
  - allow thermal motion (up to 120 mm)
- Disadvantages:
  - costs are higher than for a pipe clamp
  - lower damping ratio for high frequencies:





- Tuned Mass Damper (TMD)
  - consists of a mass, spring and damper
  - frequently seen in buildings, not (yet) in compressor systems





- Based on detuning MNF's from excitation frequencies
- The TMD is connected to the structure to be mitigated
- A TMD shall always be tuned in the field



EUROPEAN FORUM for RECIPROCATING COMPRESSORS



Frequency response function

Vibration amplitude

- TMD can be applied for systems with:
  - Limited space to install • braces;
  - Absence of stiff structures in the vicinity.
  - High elevated • structures.



Example of a TMD for a pulsation damper





for RECIPROCATING COMPRESSORS

• Tuned Mass Damper





• Constraint Layer Damping (CLD):



- CLD: based on shear between two deforming layers which are mounted on the pipe
- Constraining layer: stiff (metal) material
- Damping layer: visco-elastic material
- Base layer: pipe
- CLD is very beneficial for:
  - mitigation of high (≈> 50Hz) frequency vibrations;
  - Mitigations of pipe systems with low damping ratios (<2%)
- Traditional supporting requires in general very stiff and heavy structures; CLD can be a good alternative.







- Other advantages of Constraint Layer Damping (CLD):
  - material and installation costs are low
  - is very effective for a large frequency range
  - Not necessary to tune in field









- SBC's are small diameter side branches:
  - See SBC definition and allowable levels in:
  - 2017 edition of the EFRC Vibration Guidelines
  - New ISO 20816-8
- Typically low stiffness and a heavy mass  $\rightarrow$  low MNF's
- Fatigue failure can occur even when the main pipe vibrations are acceptable:
  - At resonance vibration (and cyclic stress): Q> 30
  - High frequency excitation can be fatal
  - Damping ratio is in general small <1%</li>
- Level gauges of separators often fail





for RECIPROCATING COMPRESSORS





- Small bore connections
- Possible mitigation measures:
  - If not necessary or not used: remove SBC's
  - Remove heavy mass→ mono flange
  - Stiffen with braces:







EUROPEAN FORUM for RECIPROCATING COMPRESSORS



Increase damping ratio using Constrained Layer Damping

- Other considerations:
  - Fatigue failure is the result of stresses, not vibrations
  - Mitigate stresses by:
    - avoiding weld imperfections
    - applying full penetration welds
    - avoiding sharp corners (grind welds) (SCFs)
  - Use adequate grouting of foundations
    - Epoxy resins







**EFRC** 

EUROPEAN FORUM for RECIPROCATING



(b) Double run 6 -remelted metal from second TIG run, 7 -HAZ from run ref (8)



(a) 1 -Rotary burr grinding, 2 -Disc grinding

(b) 3 -Full profile grinder, 4 -Toe grinding

#### Training Session "Pulsation & Vibration Control"

#### **Vibrations**



- Vibration types
- Description of vibrations
- Vibration sources
- Evaluation of vibrations
- Vibration Mitigation
  - Analyses
  - In practice
- Basic guidelines

Keep all piping low

 Good Clamps have width (do not use U-bolts)









EUROPEAN FORUM for RECIPROCATING COMPRESSORS

> Minimise number of elbows and Tees and avoid freestanding elbows



Locate supporting directly under heavy components (valves, flanges etc.) and Tee joints







Keep relief valves close to main line – apply X-bracing in air cooler frames





for RECIPROCATING COMPRESSORS

# > Avoid heavy valves at high elevation (also on top of separators)







Training Session "Pulsation & Vibration Control"

> Use stiffest beam orientation in the force direction







> Use full skirts in vessel supporting



Avoid rod and constant load > Avoid rest type supports hangers







# EUROPEAN FORUM

for RECIPROCATING

COMPRESSORS

#### **Vibrations – Basic guidelines**

Avoid unsupported overhanging weight



 Avoid unsupported expansion loops



# 

#### EUROPEAN FORUM for RECIPROCATING COMPRESSORS

#### **Vibrations – Basic guidelines**

- Brace small lines (drains, purge lines)
- > Do not use unreinforced branch connections
- Apply two-plane bracing of small bore side branches back to main pipe

