

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

EFRC Training Workshop 2019

Critical Compressor Components

Paul Modern, Cook Compression

- Compressor Valves
- Pressure Packing Cases
- Cylinder Rings Piston and Rider
- Why are these critical? Quantity of cycles
- Example 1 a typical API 618 type compressor at low speed (400 RPM) – 210 million cycles per year
- Example 2 a mid/high speed type compressor (1200 RPM) – 630 million cycles per year

EFRC EUROPEAN FORUM for RECIPROCATING

COMPRESSORS

Components causing unscheduled shutdown of recips compressing hydrogen (Dresser-Rand, 1995)

- Compressor Valves
- Pressure Packing Cases
- Cylinder Rings Piston and Rider
- Why are these critical? Quantity of cycles
- Example 1 a typical API 618 type compressor at low speed (400 RPM) – 210 million cycles per year
- Example 2 a mid/high speed type compressor (1200 RPM) – 630 million cycles per year

Criticality of components with respect to unscheduled shut down (1-not critical, 5-very critical) (EFRC, 2010)

Compressor Valves

- Fundamental operating principles ٠
- Overview of different valve types and designs •
- Application
- Capacity control

EUROPEAN FORUM for **RECIPROCATING** COMPRESSORS

Picture Courtesy Hoerbiger

- Valves rely solely on pressure differential and gas flow forces to operate
- Inlet (Suction), Outlet (Discharge) are one way valves
- Sealing element/s (plate / ring / poppet) move between a seat and a guard – seal against seat
- Valve closing is controlled by spring forces

 Piston starts to travel – gas pressure changes due to expansion of volume below piston (CE), compression of volume above piston (HE)

EFRC

EUROPEAN FORUM for RECIPROCATING

- Flowing gas (drag forces) and differential pressure allow gas to flow into CE cylinder
- HE still compressing

EFRC EUROPEAN FORUM

for **RECIPROCATING**

• HE pressure increases enough for differential pressure to open discharge valve

EFRC

EUROPEAN FORUM for RECIPROCATING

 Near top dead centre (TDC), flow rates decrease, pressures equalise, valve springs overcome forces and close valves

EUROPEAN FORUM

for **RECIPROCATING**

- Design for specific compressor applications requires three main considerations
- Valve flow area for good efficiency
- Correct valve spring loads for good closure timing (dynamics)
- Strength and material properties

Compressor Valves – Flow Area

- Passage or Lift Area is the full geometric flow area
- Effective Flow Area (EFA) is used to calculate pressure loss

30.00

25.00

20.00 🔊

15.00 **•** 10.00 **•**

5.00

0.00

1.6

Based on pressure drop testing for valves

ζ / Lift Relationship

- Determine ζ for a range of value lifts
- EFA = passage area / SQRT ζ

4.00

3.50

3.00

2.50 2.00 1.50

1.00

0.50

0

0.2

0.4

0.6

0.8

lift h

1.2

1.4

Orifice Plate

Passage Area (A cm²)

for RECIPROCATING COMPRESSORS

- Q coefficient is a valve flow adequacy measure
- Q indicates pressure drop as a percentage of suction pressure
- Ideally in the range 2 5 but higher up to 15 accepted

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

where:

ρs

Ps

Vm

Fe

Φ

- Qsv = Q at suction pressure
 - = suction gas density
 - = suction pressure
 - = mean gas velocity (through lift area)
 - = passage (lift) area
 - = EFA

- Mass flow of gas creates drag forces on seal element
- Experimental data or CFD data gives forces
- For any mass flow we can calculate force

CFD Generated Plate Pressure Profile **EFRC**

Compressor Valves – Dynamic Model

• Modelling a valve event requires an iterative cycle through the stroke of the piston

COMPRESSORS

Compressor Valves – Dynamic Model

Compressor Valves – Dynamic Model

- Sealing element impact velocity is a critical design criteria
- Sealing element stresses are proportional to the impact speed
- Closing spring stress and wear are also affected by impact speed

COMPRESSORS

Picture Courtesy Hoerbiger

Compressor Valves – Material Considerations

- Conflicting requirements pressure loads, fatigue, impact toughness
- Seats generally steel grades for strength
- Seal elements often polymer materials for combination of strength, low mass and impact toughness
- Selection of polymer is dependent on temperature, chemical compatibility and strength

COMPRESSORS

- Polymer selection based on strength at elevated temperatures during working conditions
- Polymer sealing elements can resist debris better

Flexural strength in dependence of temperature

Compressor Valves – Basic Types

- All principles mentioned apply to any type of valve
- Plate valves Single <u>flat</u> sealing element, may be damped
- Ring valves Concentric ring shaped seal elements
- Poppet Multi element valves

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

Plate Type Valves

Ring Type Valves

Poppet Type Valves

Compressor Valves – Capacity Control / Unloading

- Unloading refers to holding open suction valves
- Step unloading switches off one cylinder end
- Step-less reverse flow (SRF) unloading uses timed opening of suction valves to control capacity

Pressure Packing Cases

- Fundamental operating principles
- Overview of different seal types and designs
- Applications

PRESSURE

BREAKER

LUBE CUP

GASKET

END CUP

Case made up of pressure containing cups and a flange •

LUBE

FLANGE

VENT

DOUBLE ACTING

SEAL RINGS

VENT CUP

- Multiple seal ring sets fitted •
- Various connections for lube / cooling / vent etc

SINGLE ACTING

SEAL RINGS

PLAIN CUP

PLAIN CUP

for **RECIPROCATING** COMPRESSORS

Picture Courtesy Hoerbiger

•

• Each cup and seal ring breaks down pressure

Pressure Packing Cases – Standard Seal Rings

- Standard floating mechanical packing seal design has been around for 100 years +
- Gaps for wear compensation covered by the adjacent ring
- Backup rings do not seal on the rod but reduce clearance to prevent extrusion

- Gas Pressure
- Gas Temperature
- Speed (sliding speed)
- Lube or non-lube
- With or without cooling
- With or without purge / buffer gas
- Gas type and dewpoint
- The types and numbers of ring styles and groups within a packing are dependent on all these considerations!
- Material selections are equally driven by all these considerations!

Pressure Packing Cases - Lubrication

- Forced lubrication applied via injection on top of rod
- Reduced friction and heat
- Increased cost of operation
- Necessary for high pressure & high speed applications

Cylinder Side

Pressure Packing Cases – Non Lube

- Requires special material grades (PTFE based)
- Requires a transfer film of polymer onto metal rod
- Mechanical depositon requires proper surface finish
 - Induction hardened 0.2 0.3 Ra
 - TC coated 0.15 0.2 Ra
- Chemical reaction at interface depends on temperature & environment

for RECIPROCATING COMPRESSORS

Wear over Time due to Transfer Deposition

- API 618 states cooling is required for -
 - All non-lubed cases
 - Lube cases with non-metallic rings above 500 psi
 - All cases, lube or non-lube above 1500 psi
- Cooling reduces running temperature and extends wear life of polymer materials

Pressure Packing Cases – Purge / Buffer

- Ensures residual gasses travel to the vent line rather than atmosphere
- Buffer pressure set to vent line pressure + 1 bar

for RECIPROCATING COMPRESSORS • Material selection for the application is critical

Cylinder Rings

- Fundamental operating principles
- Piston Rings
- Rider Rings

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

Picture Courtesy Hoerbiger

Cylinder Rings – Piston Rings

- End gap and axial gap critical
- End gap compensates for expansion due to temperature
- Pressure actuated against cylinder wall

Cylinder Rings – Piston Rings

• Number of piston rings determined by pressure difference

Number of Rings
2 – 4
3 – 5
4 - 6
5 – 7
6 - 8

Cylinder Rings – Rider Rings

- Support the mass of the piston
- <u>Must Not</u> seal gas!
- Face flutes or grooves allow gas passage past the ring
- Side notches prevent seal against groove sides
- May be uncut inteference fit on piston or with end cut

Cylinder Rings – Rider Rings

- Mass must be supported along full stroke
- Accounting for cylinder cutout overun
- Mass of piston + $\frac{1}{2}$ rod = effective mass
- Assuming 1/3 circumference for load calculation
- Minimum width = effective mass / (0.866 x σ x Cyl Dia)
 - Target loadings
 - $\sigma = < 5$ psi for non-lube service
 - $\sigma = < 10$ psi for lubricated service

EFRC

Cylinder Rings – Materials

- Material considerations for cylinder rings are similar to packing case seal materials
- Lube or non-lube
- Gas type and dewpoint

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

EFRC Training Workshop 2019

Critical Compressor Components

Questions?