EFRC Training Workshop

Basic Training of Reciprocating Compressor Systems

Auxiliaries

Bernd Schmidt–HAUG Sauer Kompressoren AG St. Gallen, Switzerland

Basic Training

EFRC

EUROPEAN FORUM for RECIPROCATING

COMPRESSORS

for RECIPROCATING

COMPRESSORS

Table of content

- Introduction
- Guidelines & standards
- Heat exchanger
- Lube Oil Unit (Frame)
- Lube Oil System (Cylinder & Packing)
- Lube Oil Recovery System
- Cooling Water Unit
- Leak Gas Recovery System

Introduction

- Reciprocating compressors and their drivers require a variety of auxiliary equipment to support their operation.
- The equipment for these compressors is described as an overview in this presentation.

Guidelines & standards for recip. compressors

COMPRESSORS

- 1. MFG. / OEM Standard acc. ATEX and CE
- 2. ISO 13631 (former API11P, up & mid stream industry)
- 3. API 618, 5th Edition (downstream, petro & chemical industry)
 - Fig G-1 Cylinder Cooling System
 - Fig G-4 Typ. Self contained CW System for piston rod packing
 - Fig. G-5 Typ. Pressurized Frame Lube Oil System

Guidelines & standards for recip. compressors

API (AMERICAN PETROLEUM INSTITUTE)

- API Standard 610 "Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries"
- API Standard 660 "Shell-and-Tube Heat Exchangers for General Refinery Services"
- API Standard 661 "Air-Cooled Heat Exchangers for General Refinery Services"

Typical Heat Losses in Recip. Compressors

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

- Gas coolers
- Frame lube oil
- Cylinder & packing
- remains in gas

Source: Prof. Dipl-Ing. K.H. Küttner, Kolbenverdichter, Auslegung & Betrieb

How to calculate the heat duty for heat exchangers?

$$Q = M * Cp * \Delta T$$

Where:

- Q is the heat duty or the total heat transferred. Btu/hr or W
- M is the Mass flow rate for the fluid (Air, water, oil) undergoing the temperature change. Ib/hr or kg/s
- Cp is the heat capacity of the fluid undergoing the temperature change. Btu/lb.° F or J/kg.° K
- ∆T is the temperature change in fluid normally calculated as the difference between outlet and inlet temperatures. ° F or ° K(° C)

for RECIPROCATING COMPRESSORS

- Shell and tube heat exchanger
 Process gas, cooling water, lube-oil
- Bolted plate heat exchanger
 Cooling water and lube-oil
- Air heat exchanger
 - Cooling water & lube-oil,

- Air heat exchanger
 - Process gas and / or cooling water,

Combined Design

Lubrication systems

CYLINDER AND CRANK MECHANISM LUBE CIRCUITS

Frame lubrication paths

Frame Iubrication

Auxiliary End Lubrication Components

Auxiliary End Lubrication Components

Frame lubrication

Spin-On Oil Filters

Auxiliary End Lubrication Components

Frame Iubrication P&I D

• 6.12.1 Cylinder lubrication (ISO 13631)

for RECIPROCATING COMPRESSORS

- Either block-distribution lubrication systems or
- pump-to-point lubrication systems shall be furnished for lubrication of compressor cylinder ring travel bore and piston rod packing.
- The force-feed lubricator shall be suited for variable flow.

Cylinder & packing lubrication calculation

\sim		Recommended Liters/day		
Minimum R	ecommended Mineral Oil ISO Grade and Type	Packing	Cylinder	Total
Throw 1	SAE 50-60 wt (ISO 220-320) or SAE 40 wt (ISO 150) w/ Compounding	1.76	2.07	3.83
Throw 2	SAE 50-60 wt (ISO 220-320) or SAE 40 wt (ISO 150) w/ Compounding	1.76	2.07	3.83
			Normal:	7.66
			Break-In*:	13.78

Force Feed System Components

Force-Feed Pump Components

Separate Oil Supply Force Feed System

Force Feed Lubrication Systems

Fa. SKF Lubrication Systems

Lube-Oil Recovery System

Oil Recovery System Installation Details

Lube-Oil Recovery System

The oil recovery system is designed to automate the recovery and reuse or disposal of oil from distance piece and packing

- Recovers oil from packing and distance piece drain lines
- Reuse oil by returning to suppy, or send to existing waste tank
- 20-40% potential oil reuse on typical compressor packages
- Eliminates mistakes made when manually venting storage vessels
- Vent to atmosphere, VRU, or flare system
- 5 gallon tank capacity, powder coated inside and out
- Instrument gas or air operated, up to 300 PSI supply, integrated regulator
- Integrated float control in tank, 2.75 gallon "swing"
- Slow speed piston pump, low air or gas usage

EUROPEAN FORUM for RECIPROCATING COMPRESSORS

Cooling water unit, API 618, D

Cooling water unit, API 618, D

- In the natural gas industry, compressors are used for various applications and compressors are used for various applications application application
- When the re-injection in the compressor suction is not possible a leak recovery system is recommended. Seal gas recovery units use special oilfree compressors specially designed for continuous operation.

API 618 Type C Distance Piece

Compressor-Data	min.	max.
Compressor housing over pressure max. ba	ır(abs)	3,5
Suction pressure p1 ba	r(abs) 1	2,5
Discharge pressure p2 ba	r(abs)	91
Suction temperature	°C 0	35
Ambient temperature	°C 0	40

Conclusions

- All process, compressor and ambient related conditions must be available for sizing the related equipment
- Selection of good engineered auxiliary systems is essential for the trouble free, long term operation of the reciprocating compression sytems.
- Regular maintenance according to the operation instructions is mandatory to maintain high availability and reliability of the auxiliary sytems

Keep the pistons running !! Good luck © Thank you

