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Outline

Thermodynamic fundamentals
• p, T, EoS, Processes, Balances

Compression cycle
• p(t) curve, p-V diagram

• Mass-flow rate & power consumption

Losses
• Valve losses

• Blow-by leakage

• Packing leakage
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• Pressure: acts in every direction

~ kinetic energy of the gas molecules 

bouncing on the containers walls

• Temperature: related to kinetic energy of 

the gas molecules (including rotational & 

vibrational components)

• Are well-defined thermodynamic/physical 

quantities (i.e. state variables), with links to 

kinetic gas theory

• Popular units: p in bar, Pa, psi;

T in K, °C, °F

• Can be field quantities p = p(x,y,z)
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Beware: Thermodynamic/Physical relations are 

expressed in absolute pressures and temperatures!

Standard temp.: 0°C(32°F)
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Pressure and temperature
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Equation of state (EoS)

• Relate state variables of a phase to each other,

e.g. p·V = m·R·T (ideal-gas equation)

• Some EoS allow to calculate phase equilibria (vapour-liquid equilibrium)

• all real gases behave approximately as ideal gases for not too high 

pressures and temperatures  ideal gas law is asymptotic limiting law 

for real gases

Process

• Change of state, e.g. from state 1 to state 2

Balance equations

• Govern how such a transition can occur

• C.f. first & second law of thermodynamics
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Initial state (CE)
• Intake event finished

• Chamber filled with gas at p1

• Valves closed
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CE compression phase
• Discharge valve closed when p<p2

• DV opens when p=p2

• The change of state is „isentropic“

Discussion
• What does „isentropic“ mean?
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CE delivery phase
• Discharge valve open

• DV closes when the piston is at BDC

• Delivery is also isentropic
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CE re-expansion phase
• Both valves are closed

• Remaining gas (clearance volume!) expands

from p2 to p1

• Change of state is isentropic

Discussion
• Why is re-expansion always steeper than

compression?
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CE suction phase
• Suction valve opens when p=p1

• SV closes when the piston is at TDC

• Chamber is being filled with gas at 

(approximately) T1, p1

• The change of state is not isentropic (only in 

the limit of infinitely large valves)

Discussion
• What are the main differences between HE 

and CE?
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shows the pressure in the cylinder

at a given time or crank angle
shows the pressure in the cylinder 

at a given volume or piston position
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γ isentropic exponent
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volume

VSW·λV

V2

Mad adiabatic mass flow (kg/s)

rpm  compressor speed

VSW  swept volume (m³)

V volumetric filling efficiency (-)

VCL

Volumetric filling efficiency

Generalised filling efficiency

• Volumetric filling efficiency

• Pressure loss (SV)

• Heating

• Leakages

Delivered mass-flow rate
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Dependence of the filling efficiency on σ and p2/p1

Increasing σ, p2/p1:
•Longer re-expansion phase

•Longer compression phase

•Shorter suction and delivery phases

There‘s a p2/p1— σ combination where λ→0!

Discussion:
•How does the p-V diagram look like when λ→0?

•Practical limits of p2/p1 (upper), σ (lower)
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By the first law of thermodynamics:
•State 1 → 2:

•H: „Enthalpy“ = internal energy + p/ρ, H = H(T, p)

•Cycle:

•Enclosed area of the pV diagram equals the work done in 

the cycle (ABCDA, isentropic compression)

Adiabatic power (ideal gas, no losses, no heat 

transfer)

mo, h2
mi, h1

Required driver power
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at the crankshaft

16

Global compressor energy balance
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Pressure loss when the valve is fully open:
•in the valve

•in the valve pocket

•in the pipe

Valve losses:
•Increase the indicated power (red area)

SV losses:

•Decrease the mass-flow rate (λp!)

Loss model
•Nozzle with ideal acceleration and full loss of kinetic energy (isenthalpic change of state)

• Peak due to slow valve opening

• Loss when the valve is fully open

• Fluctuations due to closing valve

f

tube
throttle length

orifice

f e

Valve losses
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Leaking DV valve

Hot, compressed gas flows into the 

compression chamber

Leaking SV valve

Hot, compressed gas flows into the 

intake manifold

Blow-by leakage

Hot, compressed gas flows into the 

compression chamber

• Faster compression, slower re-

expansion

• Suction gas is heated up (in the 

compression chamber)

• Discharge temperature increases

• Slower compression, faster re-

expansion

• Suction gas is heated up (in the

intake-manifold)

• Discharge temperature increases

Packing leakage

• Similar in appearance, but doesn‘t

increase the discharge temperature.

• CE Side only.

• „S“ curve in the compression line

• Suction gas is heated up (in the 

compression chamber)

• Discharge temperature increases
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• Which data is available typically?

• Analyzing p-V diagrams from the

field
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P-V diagrams in the field

Double-acting pistons:
• Over piston position (left)

• Over shifted piston position (right) Same time Same time

Further deviations:
• Pulsations during valve opening (discharge)

• Pulsations after valve closing (re-expansion line)

• HE/CE differences due to losses, etc.
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volume
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compression in the 2nd stage

single stage compression to a high delivery pressure, 

close to adiabatic compression

energy savings through 2-stage 

compression with intercooling

minus intercooler losses

2nd stage

Two-stage compressor

Discussion
• Selecting the number of stages

• Compressor sizing approaches
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