Valve selection and design under harsh conditions

Gunther Machu HOERBIGER compression technology

EFRC training on challenging environments

Contents

- Harsh conditions for valves (examples):
 - Liquid carry over / overlubrication
 - Particles (e.g. catalytic dust, sand, ...) in the gas stream
 - Corrosive attack
- How to identify the root cause of a valve failure?
 - Some guidelines
- What can be done?
 - Improved process know how:
 - Valve selection / engineering beyond pure application parameters
 - Valve design measures:
 - Plate Valves vs. Ring Valves
 - Independent ring movement
 - geometry considerations
 - Sealing element materials
 - Nonmetallics vs. metallics

EFRC training on challenging environments

Harsh conditions

- Harsh conditions for valves (examples):
 - Liquid carry over / overlubrication
 - Particles (e.g. catalytic dust, sand, ...) in the gas stream
 - Corrosive attack
- Valve problems due to process problems, plant problems e.g.
 - process modification
 - gas composition deviates from specified values
 - dirty gas

etc.

- polymerisation, condensation, freezing

EFRC training on challenging environments

Refinery

Valve type: 143CGD Gas: 78%-82% H2, CH4, C2H6 + other hydrocarbons + H2S P1: 17-24 bara P2: 30-48 bara T1: 30-50 deg C T2: 100 deg C

Dirt

Clogging of valve ports (flow restriction) Sticktion effects

EFRC training on challenging environments

Polypropylene

vertical Labyrinth piston type compressor

Valve type: 154CROK

Gas: C3H6 (C3H6+C2H4)

P1: 1,1 bara

P2: 5,3 bara

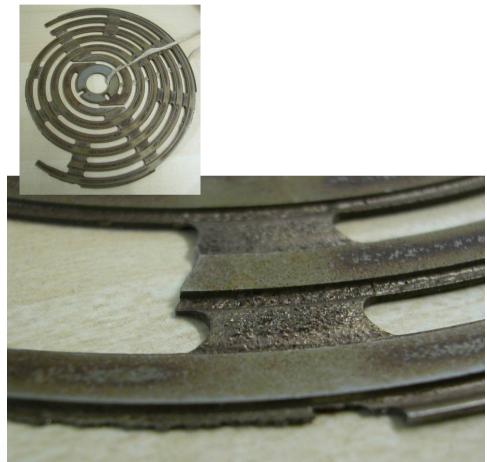
T1: 40 deg C

T2: 120 deg C

Polymerisation Clogging of valve ports (flow restriction) Sticktion effects

EFRC training on challenging environments

- Valve plate failure due to liquid or condensate
- breakages not on the outside of the plate
- Remedy: Prevent condensation e.g. by insulating of suction line, prevent liquid carryover

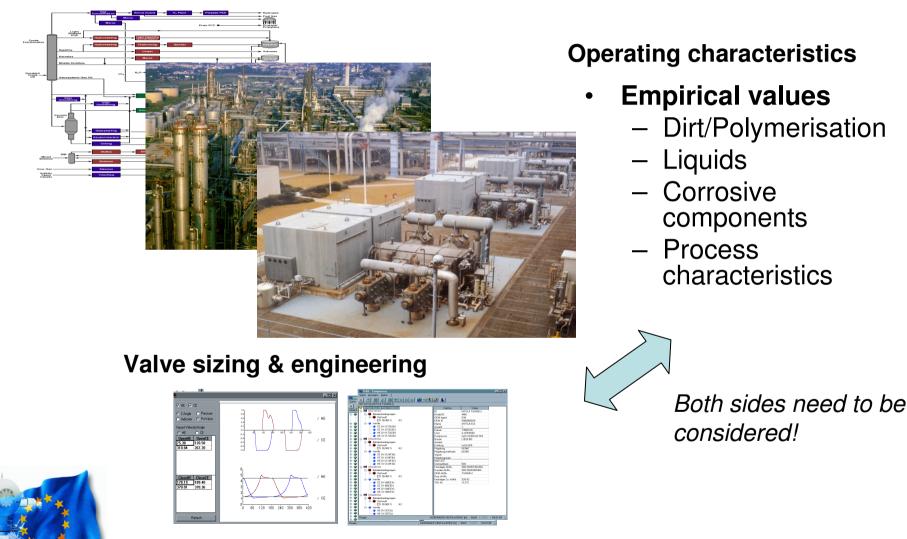

EFRC training on challenging environments

- Corrosion
- valve plate not yet broken but
- leakages increase the gas temperature
- happens very often not during operation but during stand-by period
- Remedy: Upgrade material, conversion to non-metallic material

EFRC training on challenging environments

- Heavy corrosion of martensitic material (50) in a Cl₂-compressor
- Remedy: Improve material to austenitic grade (60) or nonmetallic HP-material

EFRC training on challenging environments


How to identify root cause of failures?

Frequency of occurrence of failures		very rare sometimes	
		Valve seat / guard cracked or broken	
Symptom / Appearance		Possible Causes	
fracture surface		high differential pressure	
shows fatigue failure		incorrect seat design	
		corrosion	
fracture surface shows forced rupture		quid slug / liquid carryover	
Valve plate damaged or broken			
Symptom / Appearance	Possible Causes		
segments of outermost ring	excessive lift		
broken off	incorrect spring load		
	high impact velocity due to oil		
sticktion	molecular weight of gas different to		
c		original layout	
	extremely asymmetric gas flow		
	solid particles in gas		
	condensate in gas		
	polymerisation in gas		
	liquid carryover		
	gas pulsations		
cracks on webs or on the	liquid carryover		
inner area of the plates	consequential damage due to		
	broken parts passing the valve		

EFRC training on challenging environments

What can be done - knowledge of Application

EFRC training on challenging environments

EFRC

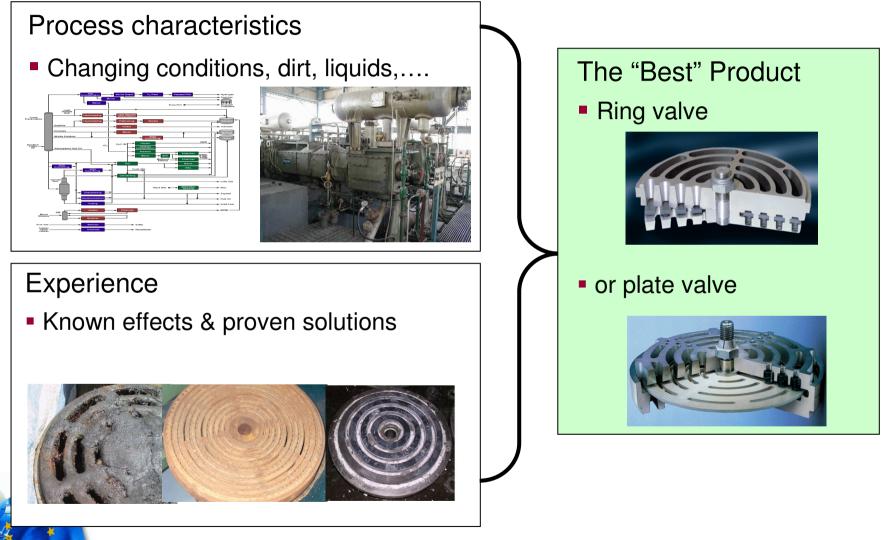
What can be done - knowledge of Application

• H2 from steam reforming

- Chemical reaction taking place: CH4 + H2O -> H2+CO -> H2+CO with Cparticles → extremely abrasive!
- Countermeasure: use valve design with spring savers and nonmetallic inner parts

CCR catalytic reforming

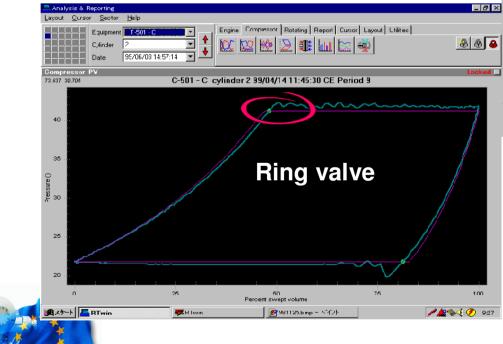
- organic chlorine used in process (cannot be seen from gasanalysis)
- extreme corrosion through chlorides on valve seat / guard and springs
- Countermeasure: correct material specification


LDPE - Polyethylene Booster Primary

- Frequent polymerisation in 1st stage
- Sticky white substance which cloggs springs, spring pockets → highly loaded sealing element and springs
- Countermeasure: usage of nonmetallic sealing elements with high impact resistance, optimized dynamic design of springs

EFRC training on challenging environments

Product Selection based on Application


What can be done - valve design

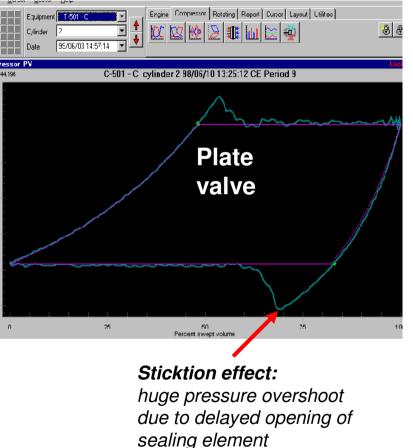

Hydrogen Compressor

Plate valve failing after short amount of time -pV reading revealed sticktion effects

Changed to ring valve -

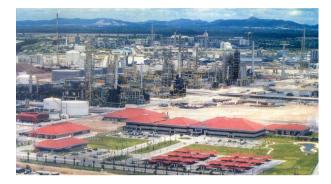
lifetime now 16.000 h

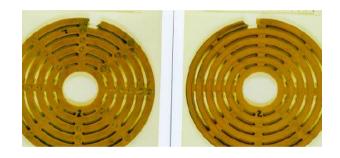
The profiled geometry of ringvalves (line contact) leads to less sticktion

EFRC training on challenging environments

What can be done - valve design

Operating Company


SiteMap Ta Phut, ThailandServiceCCR Net Gas Booster


Compressor

lubricated

Operating conditions

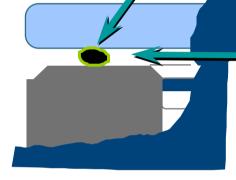
GasHydrogen Rich Gas (MW 8)Suction Pressure5,6 baraFinal Pressure47,5 bara

The Problem

originally fitted with non-metallic plate valves Discharge valve failures after 1 day to 2 months operation due to severe liquid carryover

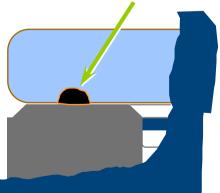
The solution:

Ringvalves fitted Valve run time improved to 26000 h



EFRC training on challenging environments

In ringvalves each ring can move independent from the others, making it easier to cope with liquid slugs


What can be done – valve materials Resistance to dirt particles – e.g. polypropylene

the steel valve plate is hard - danger of breakage

the valve seal is not tight

The plastic valve plate can deform, the particle is embedded

EFRC training on challenging environments

Plastic valve plate with embedded particles

What can be done – valve coating

Flare gas compressor: Low pressure Hydrocarbon Mix Gas + H2S wet (MW 22-36)

Valves taken out of compressor and water cleaned

Guess which valve is coated?

Coated valves were running 19500h, allowing customer to extend service intervall

EFRC training on challenging environments

Conclusions

- Reliable performance of reciprocating compressors requires design and engineering beyond pure specification – the key is the application knowledge
- Examples showed that process knowledge and good interaction of end user / OEM / component manufacturer is needed to have good solutions
- Most of the failures could have been prevented

