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Terminology in relation to 

reciprocating compressors
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Pulsation source

• Periodic piston movement

• Flow and pressure pulses are caused by gas 

compression/depression, and passage via compressor 
valves PV-Diagram - Double acting cylinder
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Typical compression cycle
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Parameters needed for quantitative 

modeling of pulsations
• Process conditions

– Pressures
– Temperatures
– Gas composition

• Compressor parameters
– RPM
– Bore
– Stroke
– Crank/Rod Ratio
– Clearances

• Operational parameters
– Unloading/capacity control

• Valve properties
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Suction flow pulse
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Discharge flow pulse
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Pulses for double-acting cylinder

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 45 90 135 180 225 270 315 360

Crank Angle [degrees]

F
lo

w
 P

u
ls

e
 [

k
g

/s
]

D - 100%

S - 100%

Discharge pulses: 

Shorter in time   

Higher in amplitude

Suction pulses: 

longer and 

lower



27 October 2008Training on Pulsations

Frequency content of pulsations
• Fundamental frequency is related to RPM, however:

• Piston movement is not entirely sinusoidal;

• Valve opening introduces steep gradients in the pulse 
shape;

• Double-acting cylinder: shift to even harmonic; 
differences between HE and CE lead also to odd 
harmonics.

• Capacity control may add higher harmonics.
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Propagation of pulsations

• Conservation equations

• Equation of state

• Gas law 

Linearized (1D) 

wave equation
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Speed of sound

Bell
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Speed of sound

• Inputs

– Gas composition

– Temperature

– Droplets

– Compressibility

– Elasticity of wall 0
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Propagation of pressure waves

simple solution of wave eq.
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Wave length

λ= c / f
• For a typical reciprocating compressor (600 RPM, f0=10Hz):

• c = 400 m/s, λ = 40 m (natural gas)

• c = 266 m/s, λ = 26.6 m (CO2)

• c = 1300 m/s, λ = 130 m (H2)

• 1-dimensional approximation of wave propagation is valid

• Effect of damping is limited

In general: λλλλ >> Dpipe !In general: λλλλ >> Dpipe !
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Plane wave propagation in pipes

• For frequencies (below the cut-off frequency fc) 
� plane wave propagation (1D)

• For higher frequencies � more complex (3D) 
propagation

• Plane wave approximation generally valid for 
piping in reciprocating compressor systems

• Most energy is contained in lower harmonics.
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Acoustic damping
• Damping of pulsating flow in pipelines is small

• wall friction/heat conductivity

• flow/turbulence (reducers/vessels/orifices)

• Pulsations can propagate over a large distance in the piping

• Effective damping after approximately >>10 times the wavelength

• For typical reciprocating compressor system piping:

• λ = 40 m, i.e. after 400 m (natural gas)

• λ = 26 m, i.e. after 260 m (carbon dioxide)

• λ = 130 m, i.e. after 1300 m (hydrogen)
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Reflection of acoustic waves

• Pressure waves are (partly) reflected when 

there is:

• a change in pipe cross section

• a branch connection

• a change in impedance Z = ρc (different 

density/sound speed)

• Part of the incident wave is reflected, part is 

transmitted
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Resonances

• Occur due to reflection � buildup of acoustic 
energy

• Limited by damping mechanisms� Quality 
factor (amplification) up to 100!

• Standing waves in main piping

• Helmholtz resonances

• Standing waves in side branches

• Thus, to manage the pulsations in a system, we 
cannot consider only the compressor itself. The 
piping periphery needs to be considered as well.



27 October 2008Training on Pulsations

Standing wave resonance

Standing wave resonances in a suction line of a compressor

Pulsation damper suction line compressor (cc)
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Helmholtz resonances
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Side branch resonance

Uo

pressure

Resonator: 

closed side branch L = λ/4, 3λ/4, 5λ/4 …

(Strong reflection if d/D < 0.2)
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Appropriate acoustic boundary 

conditions

dP > 5%dP > 5%

5 times

10 times

Long pipe lines
Large volumes

Valves
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Impact of pulsations

• Compressor performance � lecture 2

• Compressor valves � lecture 3

• Mechanical reliability � lecture 4

• Flow metering equipment

• Fluttering check valves

• Radiated noise

� lecture 5

Mitigation of pulsations
• Well-designed pulsation dampers 

• Well designed restriction orifices

• Optimize system piping layout

• Additional supporting
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Summary
• Pressure pulsations are generated by the compressor and 

propagate through the upstream and downstream piping.

• Piping systems have little intrinsic damping.

• Due to resonances, amplification may occur, even at large 
distances from the source.

• Thus, the complete system of compressor & piping must be 
considered

• Efficient mitigation measures are available to control the 
pulsations (dampers, orifices).

• This requires understanding and robust modeling tools of the 
source (compressor), and the propagation in the pipe system.

• To manage possible negative side-effects of pulsations, we 
recommend to perform a design review in accordance with API-
618 for each new installed compressor installation or major 
revamping projects...

Thank you!


