EFRC Workshop Pulsations Introduction to pulsation source and propagation

Leonard van Lier TNO Science & Industry

Contents

- Terminology
- Generation of pulsations
- Propagation of pulsations
- Impact effects of pulsations
- Mitigation of pulsations

Terminology in relation to reciprocating compressors

Training on Pulsations

Pulsation source

- Periodic piston movement
- Flow and pressure pulses are caused by gas compression/depression, and passage via compressor valves

Typical compression cycle

Training on Pulsations

EFRC

Parameters needed for quantitative modeling of pulsations

- Process conditions
 - Pressures
 - Temperatures
 - Gas composition
- Compressor parameters
 - RPM
 - Bore

EFRC

- Stroke
- Crank/Rod Ratio
- Clearances
- Operational parameters
 - Unloading/capacity control
 - Valve properties

Training on Pulsations

Suction flow pulse

Discharge flow pulse

Pulses for double-acting cylinder

Training on Pulsations

Frequency content of pulsations

- Fundamental frequency is related to RPM, however:
- Piston movement is not entirely sinusoidal;
- Valve opening introduces steep gradients in the pulse shape;
- Double-acting cylinder: shift to even harmonic; differences between HE and CE lead also to odd harmonics. 120

Capacity control may add higher harmonics. Example: typical frequency components for double-acting suction pulsations → 2nd and 4th harmonics are dominant

A range of frequencies must be considered!!

Propagation of pulsations

- Conservation equations
- Equation of state
- Gas law

$$\frac{\partial^2 p}{\partial t^2} - \left(\frac{Dp}{D\rho}\right)_{s_o} \frac{\partial^2 p}{\partial x^2} = 0$$

Speed of sound c^2

Training on Pulsations

Speed of sound

$$c = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{\gamma R_o T}{M_W}}$$

Newton: isothermal process $p/\rho = constant$

$$c^{2} = \left(\frac{Dp}{D\rho}\right)_{T_{o}} \approx \frac{p_{o}}{\rho_{o}} \xrightarrow{T = 20^{\circ}C} c = 290 \, m \, / \, s$$

1816 Laplace: isentropic process $p/\rho^{\gamma} = constant$

$$c^{2} = \left(\frac{Dp}{D\rho}\right)_{s_{o}} \approx \frac{\gamma p_{o}}{\rho_{o}} \xrightarrow{T=20^{o} C} c = 343 \, m/s$$

At standard conditions:

$$c_{air} = 340 \text{ m/s}$$

 $c_{CO2} = 266 \text{ m/s}$
 $c_{H2} = 1300 \text{ m/s}$

27 October 2008

Training on Pulsations

Speed of sound

- Inputs
 - Gas composition
 - Temperature
 - Droplets
 - Compressibility
 - Elasticity of wall

Propagation of pressure waves simple solution of wave eq.

$$\frac{\partial^2 p}{\partial t^2} - c^2 \frac{\partial^2 p}{\partial x^2} = 0$$

p(x,t) = f(x + ct) backward propagating wave

p(x,t) = g(x - ct) forward propagating wave

Wave length

$$\lambda = c / f$$
 In general: $\lambda >> D_{pipe}$!

- For a typical reciprocating compressor (600 RPM, $f_0=10Hz$):
 - c = 400 m/s, λ = 40 m (natural gas)

• c = 266 m/s,
$$\lambda$$
 = 26.6 m (CO₂)

- c = 1300 m/s, λ = 130 m (H₂)
- 1-dimensional approximation of wave propagation is valid
- Effect of damping is limited

Plane wave propagation in pipes

			$f < f_c = 0$
<i>k</i> ₀ =0	k ₁ =1,84	k ₂ =3,05	<i>k</i> ₄ =4,20
			Example of plane wave (k=0) and higher order
k3=3,83	k _s =5,33	k ₆ =6 ; 71	modes

$f < f_c = 0.586 \frac{c}{d_i}$	

diameter	f _c
0.05 (2")	4 kHz
0.1 (4")	2 kHz
0.2 (8")	1 kHz
0.4 (16")	500 Hz
0.8 (30")	250 Hz

For frequencies (below the cut-off frequency f_c) \rightarrow plane wave propagation (1D)

- For higher frequencies \rightarrow more complex (3D) • propagation
- Plane wave approximation generally valid for • piping in reciprocating compressor systems
- Most energy is contained in lower harmonics. •

Acoustic damping

- Damping of pulsating flow in pipelines is small
 - wall friction/heat conductivity
 - flow/turbulence (reducers/vessels/orifices)
- Pulsations can propagate over a large distance in the piping
- Effective damping after approximately >>10 times the wavelength
- For typical reciprocating compressor system piping:
 - $\lambda = 40$ m, i.e. after 400 m (natural gas)
 - $\lambda = 26$ m, i.e. after 260 m (carbon dioxide)
 - $\lambda = 130$ m, i.e. after 1300 m (hydrogen)

Reflection of acoustic waves

• Pressure waves are (partly) reflected when there is:

- a change in pipe cross section
- a branch connection
- a change in impedance $Z = \rho c$ (different density/sound speed)
- Part of the incident wave is reflected, part is transmitted

Resonances

- Occur due to reflection → buildup of acoustic energy
- Limited by damping mechanisms → Quality factor (amplification) up to 100!
- Standing waves in main piping
- Helmholtz resonances
- Standing waves in side branches
- Thus, to manage the pulsations in a system, we cannot consider only the compressor itself. The piping periphery needs to be considered as well.

Standing wave resonance

Training on Pulsations

Helmholtz resonances

Side branch resonance

(Strong reflection if d/D < 0.2)

Appropriate acoustic boundary conditions

Impact of pulsations

- Compressor performance \rightarrow lecture 2
- Compressor values \rightarrow lecture 3
- Mechanical reliability \rightarrow lecture 4
- Flow metering equipment
- Fluttering check valves
- Radiated noise

Mitigation of pulsations

- Well-designed pulsation dampers `
- Well designed restriction orifices
- Optimize system piping layout
- Additional supporting

 \rightarrow lecture 5

Summary

- Pressure pulsations are generated by the compressor and propagate through the upstream and downstream piping.
- Piping systems have little intrinsic damping.
- Due to resonances, amplification may occur, even at large distances from the source.
- Thus, the complete system of compressor & piping must be considered
- Efficient mitigation measures are available to control the pulsations (dampers, orifices).
- This requires understanding and robust modeling tools of the source (compressor), and the propagation in the pipe system.
- To manage possible negative side-effects of pulsations, we recommend to perform a design review in accordance with API-618 for each new installed compressor installation or major revamping projects...

