EFRC Training Workshop Basic training

Introduction to Thermodynamics and Sizing of Reciprocating Compressors Aigner, R. – Burckhardt Compression AG

Basic training Thermodynamics

Content

- Basics
- Compression cycle
- Sizing of reciprocating compressors

Basics – Thermodynamic System

Thermodynamic Systems

Separated by system boundaries (material or virtual) from surroundings (=everything except the system)

- Closed system....no transfer of matter across system boundaries
- Open system....transfer of matter across system boundaries
- Isolated system....no interaction with surroundings at all

Thermodynamic State Variables

Macroscopic properties of a system

- Volume V, Mass m, Energy u, Enthalpy h
- Pressure
- Absolute pressure = Gauge pressure + Atmospheric pressure
- Units:
 - $1 \text{ Pa} = 1 \text{ Pascal} = 1 \text{ N/m}^2$
 - 1 bar = 100.000 Pa
 - 1 psi = 6894 Pa
- Standardard conditions: atmospheric pressure

• Temperature

- Absolute temperature T K Celsius temperature $\vartheta_{\circ C}$ °C Fahrenheit scale $\vartheta_{\circ F}$ °F
- Units:

$$1 \text{ K} = \text{Kelvin} \text{ K}$$

- Standardard conditions:

$$T = 273.15 \text{ K} = 0^{\circ}\text{C} = 32^{\circ}\text{F}$$

• Molar Mass

- Is given by the weight of substance (chemical compound, molecules) divided by the amount of the substance
- Unit:
 - Molar Mass *M* g/mol
- 1 Mol consists of roughly 6.022*10²³ particles

Gas	Formula	Molar weight [g/mol]
Air	AIR	28.97 (see example)
Ammonia	NH_3	17.02
Hydrogen	H ₂	2.02
Methane	CH_4	16.04
Ethene	C_2H_4	28.05
Nitrogen	N_2	28.01
Oxygen	O ₂	32.00
Carbondioxide	CO_2	44.01

Basic training Thermodynamics

September 13/14 2017 6

• Molar Mass for gas mixtures

- Under consideration: Mixture of n gases i=1,2,...n

- For ideal gases Dalton's law is true
 Pressure of mixture = sum of partial pressures
- Partial pressure pi.... pressure gas i would have if it alone occupied the volume V at the temperature of the mixture

$$M = \sum_{i=1}^{n} \frac{n_i}{n} * M_i$$

- molar mass of the mixture
- where n denotes the amount of substances

• Molar Mass for gas mixtures Measures for concentration

mole fraction $y_i \coloneqq n_i / n$

volumetric fraction $\alpha_i \coloneqq V_i / \sum_{i=1}^n V_i$

 $\alpha_i = y_i$ for ideal gas mixtures

Example: Molar mass of dry air

Dry air consists of approx. 78% N_2 , 21 % O_2 und 1 %Ar (volume fraction). What is the molar mass of the air?

M = 0.78 * 2 * 14 kg / kmol + 0.21 * 2 * 16 kg / kmol + 0.01 * 40 kg / kmol = 29.0 kg / kmol

Basic training Thermodynamics

Basics – Equation of State

Thermal State Function

Defines the temperature T of a system dependent on pressure p and Volume V

Ideal gas law

$$p * V = m * R * T$$

- with $R = \overline{\mathcal{R}/M}$
- Specific gas constant R
- Universal gas constant $\mathcal{R} = 8.314$ [J/mol/K]
- Molar weight M
- Mass m
- Real gas
 - High temperatures: ionization and chemical reactions
 - High pressures, temperatures: molecular interaction

Different equations of state (Compressibility Factor Z, Redlich-Kwong) or database of measurement data must be used

Basic training Thermodynamics

Basics – Equation of State

• Real gas - Example Compressibility factor

defined by

$$p * V = m * R * T * Z$$

- describes deviations from ideal gas law
- Z=Z(p,T) has to be determined for each gas
- Taking real gas effects into account usually requires numerical simulations

Basics – Conservation Laws

1st Thermodynamic Law

Describes the conversation of energy

$$dE = d_e W + d_e Q + d_e^{(m)} E$$

$$\frac{dE}{dt} = \dot{W} + \dot{Q} + \dot{m} * \left[u_{in}^{(m)} + e_{kin,in}^{(m)} + e_{pot,in}^{(m)} - \left(u_{out}^{(m)} + e_{kin,out}^{(m)} + e_{pot,out}^{(m)} \right) \right]$$

Change of System Energy = performed Work + added Heat + added Energy (internal, kinetic and potential energy) of mass flow \dot{m} to the system

Conservation of Mass

$$\frac{dm}{dt} = \dot{m}_{in} - \dot{m}_{out}$$

EFRC

Change of Mass in the System = mass flow into the system – mass flow out of the system

Basic training Thermodynamics

Basics – Special Cases 1st Law

Example 1: closed system, quasistatic, adiabatic (without heat transfer) expansion of gas

p₁

p₂

EFRC

 V_1

 $dE = d_e W + d_e Q + d_e^{(m)} E \implies U_2 - U_1 = W_{12}$

Work done on system.... $d_eW = -F_{boundary} * dz$

Quasistatic change of state: pressure inside cylinder homogeneous $F_{boundary} = p^*A$

quasistatic work $d_eW = -p*A*dz = -p*dV$

$$\Rightarrow \quad U_2 - U_1 = -\int_1^2 p * dV$$

For any isentropic or adiabatic expansion (no heat transfer) change of conditions following equation is true

$$p * V^{\kappa} = const$$

with isentropic coefficient κ

Basic training Thermodynamics

vb*a

 V_2

 W_{12}

Basics – Special Cases 1st Law

Example 2: open system, steady state

Mass balance:

$$\frac{dm}{dt} = 0 = \dot{m}_{in} - \dot{m}_{out} \Longrightarrow \dot{m}_{in} = \dot{m}_{out} = \dot{m}$$

Energy balance:

$$\frac{dE}{dt} = 0 = \dot{W} + \dot{Q} + \dot{m} * \left[u_{in}^{(m)} + e_{kin,in}^{(m)} + e_{pot,in}^{(m)} - \left(u_{out}^{(m)} + e_{kin,out}^{(m)} + e_{pot,out}^{(m)} \right) \right]$$

Dividing total work W into shaft work W^s and flow work $d_eW^f = p^{(m)} v^{(m)} d_em$ (required to move fluid through system boundaries) gives

$$0 = \dot{W}^{s} + \dot{Q} + \dot{m}^{*} [\underbrace{u_{in}^{(m)} + p_{in}^{(m)} * v_{in}^{(m)}}_{:= h_{in}^{(m)}} + e_{kin,in}^{(m)} + e_{pot,in}^{(m)} - (\underbrace{u_{out}^{(m)} + p_{out}^{(m)} * v_{out}^{(m)}}_{:= h_{out}^{(m)}} + e_{kin,out}^{(m)} + e_{pot,out}^{(m)})]$$

with the specific enthalpy h:=u+p*v

Basic training Thermodynamics

Basics – Adiabatic Power Consumption

Note: losses increase discharge temperature and thereby power consumption!

Basic training Thermodynamics

EFRC

Compression Cycle – p-V-Diagram

Basic training Thermodynamics

Compression Cycle – p-V-Diagram

Basic training Thermodynamics

EFRC

Compression Cycle – p-V-Diagram

Basic training Thermodynamics

EFRC

Compression Cycle – Clearance

•Clearance refers to the volumes in each end of the cylinder that retain gas after the piston has stopped

•Gas cannot be displaced; cylinder is not 100% efficient

Compression Cycle – Volumetric Efficiency

- Volumetric efficiency
- $\eta_{vol} = \frac{V_1 V_4}{V_1 V_3}$
- with $p_1 = p_4; p_2 = p_3;$ $p_2V_2 = p_3V_3$

•
$$\eta_{vol} = 1 - \frac{V_3}{V_1 - V_3} \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{\kappa}} - 1 \right] = 1 - \frac{V_C}{V_S} \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{\kappa}} - 1 \right]$$

Basic training Thermodynamics

Compression Cycle – Volumetric Efficiency

Volumetric efficiency $\eta_v = \frac{\text{suction volume}}{\text{swept volume}}$

$$\lambda = 1 - \sigma_0 (\Pi^{\frac{1}{\kappa}} - 1) - L$$

- λ filling efficiency= volumetric efficiency η_V minus losses L
- κ polytropic exponent
- Π compression ratio p₂/p₁
- σ₀ clearance volume referred to swept volume
- L loss factor accounting for losses associated with leakage, heating up of gas during suction,....

EFRC

Compression Cycle – Mass Flow

ow $\dot{m} = \rho_s * V_{SW} * \lambda * rpm/60$

- *n* adiabatic mass flow (kg/s)
 - speed (min⁻¹)
 - swept volume
 - filling efficiency= volumetric efficiency η_V minus losses L

$$\lambda = 1 - \sigma_0(\Pi^{\frac{1}{\kappa}} - 1) - L$$

- κ polytropic exponent
- Π compression ratio p_2/p_1
- $\sigma_0 \ \ \text{clearance volume referred to swept} \\ \text{volume}$
 - L loss factor accounting for losses associated with leakage, heating up of gas during suction,....

EFRC

Compression Cycle – Different p-V-Diagrams

Influence of pressure ratio p2/p1 and clearance volume σ_0

Compression Cycle – Actual p-V-Diagram

Basic training Thermodynamics

Compression Cycle – Losses

A certain % of compressor work is lost due to losses (suction and discharge

EFRC

Compression Cycle – Losses

The areas exceeding nominal discharge pressure show the different losses at the delivery side.

Basic training Thermodynamics

Different reasons for multistage compressor:

- 1. Temperature Compression ratio
- 2. Efficiency Volume flow and power consumption
- 3. Load on compressor parts

Basic training Thermodynamics

Compression ratio - Temperature

The adiabatic compresson temperature

$$T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

limits the pressure ratio in one stage as neither material nor gas may stand such a high discharge temperature value.

Practice shows, that reasonable maximal pressure ratios per stage are:

 $p_2/p_1 = 5$ for polyatomic gases with $\kappa = 1,3$ (natural gas, CO₂ etc.) $p_2/p_1 = 4$ for diatomic gases with $\kappa = 1,4$ (air, N₂, H₂, CO etc.) $p_2/p_1 = 3$ for monoatomic gases $\kappa = 1,67$ (He, Ne, Xe, Ar etc.)

Multistage Compressors

Basic training Thermodynamics

Compression Ratio - Temperature

- Achieve higher pressures
- Needs to be cooled down between stages in order to avoid exceeding permissible temperature for compressor materials and lubricating oil.

Basic training Thermodynamics

EFRC

Efficiency – Power Consumption

Example

Compression of Ethene from 1 to 8 bara, suction temperature 20°C (each stage), κ =1.24, clearance volume of each stage: 10% of swept volume, interstage pressure: 2.83 bara

Single-stage compressor	Multi-stage compressor
$T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} = 438^{\circ}\text{K} = 165^{\circ}\text{C}$	$T_2 = 273 \cdot \left(\frac{3.16}{1}\right)^{\frac{1.24-1}{1.24}} = 358^{\circ} \text{K}$ = 85°C
$\eta_{vol} = 1 - \frac{V_C}{V_S} \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{\kappa}} - 1 \right] = 0.565$	$\eta_{vol} = 1 - 0.1 \left[\left(\frac{2.828}{1} \right)^{\frac{1}{1.24}} - 1 \right]$ = 0.869
	Power consumption is 9% lower

Basic training Thermodynamics

Sizing – Valve Model

Flow through valve = Isentropic flow through a nozzle

Effective Flow Area A_{eff} must be determined using CFD or experiments

Basic training Thermodynamics

Sizing – Method

- Thermodynamic System Numerical Simulation of Compression Chamber:
 - 0-, 1-, 2- or 3 dimensional model of compression chamber (conservation laws)
 - Valve model
 - Real gas equation of state or data base
 - Heat transfer
 - Model for losses (leakage, ventilation losses, flow through pipes)
 - Motion of drive chain
- Mechanical Strength
- Dynamics of drive chain
- Vibration and pulsation study
- Tribology for sealing elements and rider rings

Summary

- A reciprocating compressor is the most efficient device to compress gas
- Although seemingly simple, a lot of fluid mechanics and thermodynamic knowledge is required
- For high pressures and low to high volume flows the reciprocating compressor is the best choice
- There is no substitute for the reciprocating compressor

