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Basics — Thermodynamic System

Thermodynamic Systems

Separated by system boundaries (material or virtual) from surroundings
(=everything except the system)

* Closed system....no transfer of matter across system boundaries
* Open system....transfer of matter across system boundaries

* |solated system....no interaction with surroundings at all

open system,
deformable system
boundaries

Open system, system
boundaries fixed in space
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Basics - State Variables

Thermodynamic State Variables

Macroscopic properties of a system
pressure above atmospheric pressure

* Volume V, Mass m, Energy u, A A

(6]
Enthalpy h 5
* Pressure 2
o
— Absolute pressure = Gauge S >
. @© 0
B:g:ﬂ:g + Atmospheric Atmospheric pressure 7| £
£ 2
— Units: = o o =
1Pa =1Pascal =1 N/m? S, 5 T @® 3
1 bar =100.000 Pa “sol o £ g
1psi = 6894 Pa 52| & 8 &
— Standardard conditions: 22| 7 &
atmospheric pressure
Do = 1,0133 bara perfect vacuum
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Basics - State Variables

* Temperature

S = 1,89 .+32 °F
— Standardard conditions:
T=273.15K = 0°C = 32°F

— Absolute temperature T K arbitrary temperature
Celsius temperature 3 .. °C R
Fahrenheit scale 3. °F S o
O
— Units: S| g ¢
: T O o
1K = Kelvin K o | 2 3
e 9
= - ° 5 T
9 ec T-273.15 C  standard temp.0°C & | £ 3
— (9 oF' 320':) / 1’8 w FE3
& o
™ 5
" 2
. 8
N~
AN

absolute zero: 0 K
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Basics - State Variables

* Molar Mass

— Is given by the weight of substance (chemical compound, molecules)
divided by the amount of the substance

— Unit:
Molar Mass M g/mol
— 1 Mol consists of roughly 6.022*102%3 particles

Gas Molar weight [g/mol]

Air AIR 28.97 (see example)
Ammonia NH, 17.02
Hydrogen H, 2.02

Methane CH, 16.04
Ethene C,H, 28.05
Nitrogen N, 28.01
Oxygen O, 32.00
Carbondioxide CO, 44.01
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Basics - State Variables

* Molar Mass for gas mixtures
— Under consideration: Mixture of n gases i=1,2,...n

— For ideal gases Dalton’s law is true
Pressure of mixture = sum of partial pressures

— Partial pressure pi.... pressure gas i would have if it alone occupied
the volume V at the temperature of,the mixture

M=) e,

izg N

— molar mass of the mixture

— where n denotes the amount of substances
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Basics - State Variables

* Molar Mass for gas mixtures

Measures for concentration

mole fraction Yy, =n;/n
volumetric fraction o =V,/ )V,
i=1

a; =Y, for ideal gas mixtures

Example: Molar mass of dry air

Dry air consists of approx. 78% N,, 21 %0, und 1 %Ar (volume fraction).
What is the molar mass of the air?

M =0.78*2*14kg/kmol+0.21*2*16kg / kmol
+0.01*40kg / kmol = 29.0kg / kmol
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Basics — Equation of State

Thermal State Function
Defines the temperature T of a system dependent on pressure p and Volume V

« Ideal gas law [p*V=m*R*T]
— with R = R/M
— Specific gas constant R
— Universal gas constant R = 8.314 [J/mol/K]
— Molar weight M
— Massm
 Real gas
— High temperatures: ionization and chemical reactions
— High pressures, temperatures: molecular interaction

Different equations of state (Compressibility
‘ Factor Z, Redlich-Kwong) or database of
measurement data must be used
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Basics — Equation of State

 Real gas - Example Compressibilty factor
defined by

P*V =m*R*T *Z

— describes deviations from ideal gas law
— Z=Z(p,T) has to be determined for each gas
— Taking real gas effects into account usually requires numerical
simulations
S

v

/4———*—" —100°C

— 280

7 — G0
—ldeal Gas

2

=
[ ]

Compressibility factor
of Nitrogen

Compressibility z

=
L]

0 200 400 600 a00 1000

Pressure (atm)
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Basics — Conservation Laws

1t Thermodynamic Law
Describes the conversation of energy

dE =d W +d.Q+d,"E

dE . .
_ : (m) (m) (m) (m) (m) (m)
dt =W + Q +m* [uin + ekin,in + epot,in o (uout + ekin,out + epot,out )]

Change of System Energy = performed Work + added Heat + added Energy
(internal, kinetic and potential energy) of mass flow m to the system

Conservation of Mass
dm _ w "
o min mout

Change of Mass in the System = mass flow into the system — mass flow out of
the system
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Basics — Special Cases 15! Law

Example 1: closed system, quasistatic, adiabatic (without heat
transfer) expansion of gas

dE=dW+dQ+d"E == U,-U, =W,

Work done on system....dW= - Fy4ary*02

state 2 . .
Quasistatic change of state: pressure inside cylinder

state 1 homogeneous .... Fyngary = P*A

quasistatic work d W = - p*A*dz= - p*dV

—— — — — — ]

2
z| | | =) U,-U,=—[p*dv
1

For any isentropic or adiabatic expansion (no heat
transfer) change of conditions following equation is true

pl_l
/x -y [ p*V* =const |
]
s
Vi

P2 12— | Wy with isentropic coefficient x

—

Vv,
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Basics — Special Cases 15! Law

Example 2: open system, steady state Q W .

r____z___”—mout

'~ N

. | I (U, piv)out
Mass balance: m, _ | |
——TF Zout

dm . . . . . (U pv), lebo——o— .
—:Ozmin_moutjmin =My, =M Zin
dt
Energy balance:
dE

— ) —\\ ' : (m) (m) (m) (m) (m) (m)
E - 0 _W + Q +m * [uin + ekin,in + epot,in o (uout + ekin,out + epot,out )]

Dividing total work W into shaft work Ws and flow work d ,W'=p(M v(™ d_m (required to
move fluid through system boundaries) gives

—\\/S 1 C - (m) (M) % ,(m) (m) (m) (m) (M) % ,(m) (m) (m)
0 _W + Q +Mm *[Elin + pin *Vin , + ekin,in + epot,in T (Ejout + pout *VoutJ + ekin,out + epot,out)]
(M) — R(m
T hin T hout
with the specific enthalpy h:=u+p*v
Basic training Thermodynamics September 13/14 201713

EFRC



Basics — Adiabatic Power Consumption

Adiabatic compression of ideal gas:
(kinetic and pot. energy not considered)

, 1o, h
SR 0=P+m*(h —h,)=P=m*c, *(T,-T,)

M — with power consumption P and
P isobaric heat capacity c,
Py, Ty, Ny %_1
. . . . T.=T* &
Reversible adiabatic compression: =y

= P =m*c, *T,* (pdj -1
Ps

Note: losses increase discharge temperature and thereby power consumption!
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Compression Cycle — p-V-Diagram

.
- - B B
| ' ,
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Compression Cycle — p-V-Diagram

next cycle

begins
dlscharge

expansion

= 2\
o I
\S
..... of the gas volume V
in the cylinder suction
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Compression Cycle — p-V-Diagram

Pressure - Time Diagram Pressure - Volume Diagram
p1t p;v
shows the pressure in the cylinder shows the pressure in the cylinder
T at a given time or crank angle at a given volume or piston position
o — o
2| /
/
: / nd :
8 //
© V'_———,f
E’ ) - ) e = *
> time t —> volume V
TDC BDC TDC TDC BDC
360°
180° 360° 0° 180°
crank angle crank angle
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Compression Cycle — Clearance

Zi = Clearance Volume

Piston at frame end Piston at outer end

Clearance refers to the volumes in each end of the
cylinder that retain gas after the piston has stopped

*Gas cannot be displaced; cylinder is not 100% efficient
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Compression Cycle — Volumetric Efficiency

Volumetric efficiency
Vi—V4

Nvol = V,—Vs

with p; = 245292 = Pii
p2V, = p3V;

Nyor = 1 — V1113V3 [(Z—i)i — 1]:

]
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Compression Cycle — Volumetric Efficiency

A <
L
-]
[92]
0
L
o
voI,ume
Q
e :
S Suction velume
S
)
&)
= swept volume
© = piston area X piston stroke
Top T
Dead
Centre
TDC
............................... . — Bottom
~. Dead
Centre
. " BDC
<=3 piston position =—>

Basic training Thermodynamics

Volumetric efficiency

suction volume
swept volume

1
Ry

Vv

A filling efficiency= volumetric
efficiency n,, minus losses L

K  polytropic exponent

[T compression ratio p,/p;

G clearance volume referred to
swept volume

L loss factor accounting for
losses associated with
leakage, heating up of gas
during suction,....
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Compression Cycle — Mass Flow

A D Mass flow [m = ps * Vs * A * rpm/60 ]

]

m adiabatic mass flow (kg/s)

speed (min)

Vsw swept volume

A filling efficiency= volumetric
efficiency n,, minus losses L

[/1 =1—0'0(H%—1) -L ]

K  polytropic exponent

pressure
=)
3

o
wf
7

V, volume V,

Vsw My
swept volume Vg, —

[T compression ratio p,/p,
G clearance volume referred to swept

<=

vyTDC BDC\

. volume

L loss factor accounting for losses
associated with leakage, heating up
— of gas during suction,....

arance volunle
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Compression Cycle — Different p-V-Diagrams

Influence of pressure ratio p2/p1 and clearance volume o,

a
P TDC BDC
] \ y
Vaw o
—» C
V
>

gr_ EFRC

Basic training Thermodynamics

Influence of pressure ratio p2/pl on
volumetric efficiency:

4,6, 8

clearance ¢, constant 10%Vg,,

Influence of clearance G, on vol.
efficiency:
a: 6%,
b: 10%,
c: 15 % of Vg
Pressure ratio p,/p, constant
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Compression Cycle — Actual p-V-Diagram

Compression process
we===_equivalent adiabatic cycle
mmmm=  actual compression cycle

1’-2" polytropic compression
2’-3’ delivery with valve losses
3’ -4 polytropic expansion

4’ -1’ suction with valve losses

DD pressure variation in delivery branch
O = Output

DS pressure variation in suction branche
I = Inlet

W polytropic work done

W, work done with suction valves losses

W4 work done with delivery valve losses
Wing induced work done Wy, + W, + W)

Cooling water
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Compression Cycle — Losses

A certain % of compressor work is lost due to losses (suction and discharge

‘({7 Discharge losses " discharge

30 pressure
25" AREA BORDERED
BY THE RED LINE:
g 207 INDICATED WORK
° I5- OF CYLINDER END \
0 .
o suction
s 10 \\/ pressure
5 Suction losses
0
0% 20% 40% 60% 80% 100%
displacement [%]
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Compression Cycle — Losses

The areas exceeding nominal discharge pressure show the
different losses at the delivery side.

losses
in valve

losses in
valve pocket

pipe losses and
pulsation losses

Nominal dis?h/arg

pressure pv diagram

pulsating pressure
in the pressure chamber

y
B h

' E
&—
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Sizing — Multistage Compressors

Different reasons for multistage compressor:

=

Temperature — Compression ratio

2. Efficiency — Volume flow and
power consumption

3. Load on compressor parts
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Sizing — Multistage Compressor
Compression ratio - Temperature

The adiabatic compresson temperature

k-1

T, =T1-[%jj

limits the pressure ratio in one stage as neither material nor gas may stand
such a high discharge temperature value.

Practice shows, that reasonable maximal pressure ratios per stage are:

p,/p, =5 for polyatomic gases with k = 1,3 (natural gas, CO, etc. ..... )
p,/p, = 4 for diatomic gases with k = 1,4 (air, N,, H,, CO etc. ..... )
p,/p, = 3 for monoatomic gases Kk = 1,67 (He, Ne, Xe, Ar etc. ..... )

‘ Multistage Compressors
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Sizing — Multistage Compressors

Compression Ratio - Temperature
» Achieve higher pressures

* Needs to be cooled down between stages in order to avoid exceeding
permissible temperature for compressor materials and lubricating oil.

cooling cooling cooling
1ststage 2nd stage 3 stage
137°C ° 139°C
gas 129°C gas
intake 4s7C
delivery
20°c B soocjif
3 bar 22 bar
Example: Air {F {F
1 bar 8 bar

k-1

& ) Pd ... Discharge pressure  PS ... Suction pressure
P, Ts ... Suction temperature Kk ... Isentropic coeff.
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Sizing — Multistage Compressors

Efficiency — Power Consumption

P

pressure

A

\ A

single stage compression to a high delivery pressure,
close to adiabatic compression (most work required)

compression in the 2"d stage

energy savings through 2-stage
compression with intercooling
minus intercooler losses

compression in the 15t stage

15t stage

.
>

volume \
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Sizing — Multistage Compressors

Example

Compression of Ethene from 1 to 8 bara, suction temperature 20°C (each
stage), k=1.24, clearance volume of each stage: 10% of swept volume,
interstage pressure: 2.83 bara

Single-stage compressor Multi-stage compressor

K—1 1.24—-1
p2'77 3.1 1.24
T,=T; - (p—) = 438°K =165°C T, =273~ (T) = 358°K
1
= 85°C
1 1
=1 —2e|(P2)"_ 1| = 0.565 —1—o1|(Z828)* 4
Nvol VS D1 - Y Nvol = . 1
= 0.869
Power consumption is 9% lower
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Sizing — Valve Model

Flow through valve = Isentropic flow through a nozzle

P2
- ' - Effective Flow Area A4 must be
P 1y 1 determined using CFD or experiments
=

<ﬂ)

X3

22N
&l

' E
EL
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Sizing — Method

« Thermodynamic System - Numerical Simulation of
Compression Chamber:

S EFRC

Mechanical Strength

Dynamics of drive chain
Vibration and pulsation stuc
Tribology for sealing eleme

0-, 1-, 2- or 3 dimensional model of compression chamber
(conservation laws)

Valve model

Real gas equation of state or data base

Heat transfer

Model for losses (leakage, ventilation losses, flo
Motion of drive chain
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Summary

* A reciprocating compressor is the most efficient
device to compress gas

« Although seemingly simple, a lot of fluid mechanics
and thermodynamic knowledge is required

* For high pressures and low to high volume flows the
reciprocating compressor is the best choice

* There is no substitute for the reciprocating
compressor
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