EFRC Training Workshop Basic training

Introduction to Thermodynamics and Sizing of Reciprocating Compressors Aigner, R. - Burckhardt Compression AG

Content

- Basics
- Compression cycle
- Sizing of reciprocating compressors

Basics - Thermodynamic System

Thermodynamic Systems

Separated by system boundaries (material or virtual) from surroundings (=everything except the system)

- Closed system....no transfer of matter across system boundaries
- Open system....transfer of matter across system boundaries
- Isolated system....no interaction with surroundings at all

Basics - State Variables

Thermodynamic State Variables

Macroscopic properties of a system

- Volume V, Mass m, Energy u, Enthalpy h
- Pressure
- Absolute pressure = Gauge pressure + Atmospheric pressure
- Units:
$1 \mathrm{~Pa}=1$ Pascal $=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{bar}=100.000 \mathrm{~Pa}$
$1 \mathrm{psi}=6894 \mathrm{~Pa}$
- Standardard conditions:
atmospheric pressure
$p_{0}=1,0133$ bara
pressure above atmospheric pressure

perfect vacuum

Basics - State Variables

- Temperature
- Absolute temperature T Celsius temperature $\vartheta^{\circ} \mathrm{C}$ Fahrenheit scale $\vartheta_{\text {of }}$

K
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$
K
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$

- Standardard conditions:

$$
T=273.15 \mathrm{~K}=0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}
$$

$$
\begin{array}{rlr}
1 \mathrm{~K} & =\text { Kelvin } & \mathrm{K} \\
\vartheta^{\circ} \mathrm{C} & =\mathrm{T}-273.15 & { }^{\circ} \mathrm{C} \\
& =\left(\vartheta_{{ }_{\circ}}-32^{\circ} \mathrm{F}\right) / 1,8{ }^{\circ} \mathrm{C} \\
\vartheta^{\circ} \mathrm{F} & =1,8 \vartheta^{\circ} \mathrm{C}+32 & { }^{\circ} \mathrm{F}
\end{array}
$$

- Units:

Basics - State Variables

- Molar Mass
- Is given by the weight of substance (chemical compound, molecules) divided by the amount of the substance
- Unit:

$$
\text { Molar Mass } M \quad \mathrm{~g} / \mathrm{mol}
$$

- 1 Mol consists of roughly $6.022^{*} 10^{23}$ particles

Gas	Formula	Molar weight [g/mol]
Air	AIR	28.97 (see example)
Ammonia	NH_{3}	17.02
Hydrogen	H_{2}	2.02
Methane	CH_{4}	16.04
Ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.05
Nitrogen	N_{2}	28.01
Oxygen	O_{2}	32.00
Carbondioxide	CO_{2}	44.01

Basics - State Variables

- Molar Mass for gas mixtures
- Under consideration: Mixture of n gases $i=1,2, \ldots n$

- For ideal gases Dalton's law is true Pressure of mixture = sum of partial pressures
- Partial pressure pi.... pressure gas i would have if it alone occupied the volume V at the temperature of ${ }_{n}$ the mixture

$$
M=\sum_{i=1}^{n} \frac{n_{i}}{n} * M_{i}
$$

- molar mass of the mixture
- where n denotes the amount of substances

Basics - State Variables

- Molar Mass for gas mixtures

Measures for concentration
mole fraction $\quad y_{i}:=n_{i} / n$
volumetric fraction $\quad \alpha_{i}:=V_{i} / \sum_{i=1}^{n} V_{i}$
$\alpha_{i}=y_{i}$ for ideal gas mixtures

Example: Molar mass of dry air

Dry air consists of approx. $78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2}$ und $1 \% \mathrm{Ar}$ (volume fraction). What is the molar mass of the air?

$$
\begin{aligned}
M= & 0.78 * 2 * 14 \mathrm{~kg} / \mathrm{kmol}+0.21 * 2 * 16 \mathrm{~kg} / \mathrm{kmol} \\
& +0.01 * 40 \mathrm{~kg} / \mathrm{kmol}=29.0 \mathrm{~kg} / \mathrm{kmol}
\end{aligned}
$$

Basics - Equation of State

Thermal State Function

Defines the temperature T of a system dependent on pressure p and Volume V

- Ideal gas law $p * V=m * R * T$
- with $R=\mathcal{R} / M$
- Specific gas constant R
- Universal gas constant $\mathcal{R}=8.314[\mathrm{~J} / \mathrm{mol} / \mathrm{K}]$
- Molar weight M
- Mass m
- Real gas
- High temperatures: ionization and chemical reactions
- High pressures, temperatures: molecular interaction

Different equations of state (Compressibility
Factor Z, Redlich-Kwong) or database of measurement data must be used

Basics - Equation of State

- Real gas - Example Compressibilty factor
defined by

$$
p^{*} V=m^{*} R^{*} T^{*} Z
$$

- describes deviations from ideal gas law
- $Z=Z(p, T)$ has to be determined for each gas
- Taking real gas effects into account usually requires numerical simulations

Compressibility factor of Nitrogen

Basics - Conservation Laws

$1^{\text {st }}$ Thermodynamic Law

Describes the conversation of energy

$$
\begin{aligned}
& d E=d_{e} W+d_{e} Q+d_{e}^{(m)} E \\
& \frac{d E}{d t}=\dot{W}+\dot{Q}+\dot{m} *\left[u_{\text {in }}^{(m)}+e_{\text {kin,in}}^{(m)}+e_{p o, i n}^{(m)}-\left(u_{\text {out }}^{(m)}+e_{\text {kin,out }}^{(m)}+e_{\text {poot,out }}^{(m)}\right)\right]
\end{aligned}
$$

Change of System Energy = performed Work + added Heat + added Energy (internal, kinetic and potential energy) of mass flow \dot{m} to the system

Conservation of Mass

$$
\frac{d m}{d t}=\dot{m}_{i n}-\dot{m}_{\text {out }}
$$

Change of Mass in the System = mass flow into the system - mass flow out of the system

Basics - Special Cases 1 $^{\text {st }}$ Law

Example 1: closed system, quasistatic, adiabatic (without heat transfer) expansion of gas

$$
d E=d_{e} W+d_{e} Q+d_{e}^{(m)} E \quad \Longrightarrow U_{2}-U_{1}=W_{12}
$$

Work done on system.... $d_{e} W=-F_{\text {boundary }} * d z$
Quasistatic change of state: pressure inside cylinder homogeneous $F_{\text {boundary }}=p^{*} A$
quasistatic work $d_{e} W=-p * A * d z=-p * d V$

$$
\Rightarrow \quad U_{2}-U_{1}=-\int_{1}^{2} p^{2} d V
$$

For any isentropic or adiabatic expansion (no heat

$$
p^{*} V^{\kappa}=c o n s t
$$

with isentropic coefficient κ

Basics - Special Cases $1^{\text {st }}$ Law

Example 2: open system, steady state

Mass balance:

$$
\frac{d m}{d t}=0=\dot{m}_{\text {in }}-\dot{m}_{\text {out }} \Rightarrow \dot{m}_{\dot{m}_{\text {in }}}=\dot{m}_{\text {out }}=\dot{m}
$$

Energy balance:

$$
\frac{d E}{d t}=0=\dot{W}+\dot{Q}+\dot{m} *\left[u_{i n}^{(m)}+e_{k i n, j n}^{(m)}+e_{p o t, i n}^{(m)}-\left(u_{\text {out }}^{(m)}+e_{k i n, o u t}^{(m)}+e_{p o t, \text { out }}^{(m)}\right)\right]
$$

Dividing total work W into shaft work W^{s} and flow work $d_{e} W^{i}=p^{(m)} v^{(m)} d_{e} m$ (required to move fluid through system boundaries) gives

$$
0=\dot{W}^{s}+\dot{Q}+\dot{m} * \dot{m}_{:=h_{i n}^{(m)}}^{\left[u_{i n}^{(m)}+p_{i n}^{(m)} * v_{i n}^{(m)}\right.}+e_{\text {kin,in}}^{(m)}+e_{\text {pot,in}}^{(m)}-\underbrace{\left(u_{\text {out }}^{(m)}+p_{\text {out }}^{(m)} * v_{\text {out }}^{(m)}\right.}_{:=h_{\text {out }}^{(m)}}+e_{\text {kin,out }}^{(m)}+e_{\text {pot,out }}^{(m)})]
$$

with the specific enthalpy $h:=u+p * v$

Basics - Adiabatic Power Consumption

Adiabatic compression of ideal gas: (kinetic and pot. energy not considered)

个 p_{2}, T_{2}, h_{2}

$$
0=P+\dot{m}^{*}\left(h_{1}-h_{2}\right) \Rightarrow P=\dot{m}^{*} c_{p} *\left(T_{2}-T_{1}\right)
$$

with power consumption P and isobaric heat capacity c_{p}

Reversible adiabatic compression:

$$
T_{d}=T_{s} *\left(\frac{p_{d}}{p_{s}}\right)^{\frac{\kappa-1}{\kappa}}
$$

$$
\Rightarrow P=\dot{m} * c_{p} * T_{s} *\left[\left(\frac{p_{d}}{p_{s}}\right)^{\frac{\kappa-1}{\kappa}}-1\right]
$$

Note: losses increase discharge temperature and thereby power consumption!

Compression Cycle - p-V-Diagram

Compression Cycle - p-V-Diagram

EFRC

Compression Cycle - p-V-Diagram

Pressure - Time Diagram p,t

shows the pressure in the cylinder at a given time or crank angle

Pressure - Volume Diagram
 p,V

shows the pressure in the cylinder at a given volume or piston position

Compression Cycle - Clearance

-Clearance refers to the volumes in each end of the cylinder that retain gas after the piston has stopped
-Gas cannot be displaced; cylinder is not 100% efficient

Compression Cycle - Volumetric Efficiency

- Volumetric efficiency
- $\eta_{\text {vol }}=\frac{V_{1}-V_{4}}{V_{1}-V_{3}}$
- with $p_{1}=p_{4} ; p_{2}=p_{3}$;

$$
p_{2} V_{2}{ }^{\kappa}=p_{3} V_{3}
$$

- $\eta_{\text {vol }}=1-\frac{V_{3}}{V_{1}-V_{3}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\kappa}}-1\right]=$
$1-\frac{V_{C}}{V_{S}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\kappa}}-1\right]$

Compression Cycle - Volumetric Efficiency

Compression Cycle - Mass Flow

Mass flow

$$
\dot{m}=\rho_{S} * V_{S W} * \lambda * r p m / 60
$$

$\dot{m} \quad$ adiabatic mass flow (kg / s)
rpm speed (min^{-1})
$V_{S W} \quad$ swept volume filling efficiency= volumetric efficiency η_{V} minus losses L

$$
\lambda=1-\sigma_{0}\left(\Pi^{\frac{1}{\kappa}}-1\right)-L
$$

κ polytropic exponent
Π compression ratio p_{2} / p_{1}
σ_{0} clearance volume referred to swept volume
L loss factor accounting for losses associated with leakage, heating up of gas during suction,....

EFRC

Compression Cycle - Different p-V-Diagrams

Influence of pressure ratio p2/p1 and clearance volume σ_{0}

Influence of pressure ratio p2/p1 on volumetric efficiency:

$$
4,6,8
$$

clearance σ_{0} constant $10 \% \mathrm{~V}_{\text {Sw }}$

Influence of clearance σ_{0} on vol. efficiency:
a: 6\%,
b: 10\%,
c: 15% of $V_{s w}$
Pressure ratio p_{2} / p_{1} constant

Compression Cycle - Actual p-V-Diagram

Basic training Thermodynamics

Compression Cycle - Losses

A certain \% of compressor work is lost due to losses (suction and discharge

Compression Cycle - Losses

The areas exceeding nominal discharge pressure show the different losses at the delivery side.

Sizing - Multistage Compressors

Different reasons for multistage compressor:

1. Temperature - Compression ratio
2. Efficiency - Volume flow and power consumption
3. Load on compressor parts

Sizing - Multistage Compressor

Compression ratio - Temperature

The adiabatic compresson temperature

$$
T_{2}=T_{1} \cdot\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}
$$

limits the pressure ratio in one stage as neither material nor gas may stand such a high discharge temperature value.

Practice shows, that reasonable maximal pressure ratios per stage are:
$\mathrm{p}_{2} / \mathrm{p}_{1}=5$ for polyatomic gases with $\mathrm{K}=1,3$ (natural gas, CO_{2} etc.)
$\mathrm{p}_{2} / \mathrm{p}_{1}=4$ for diatomic gases with $\mathrm{k}=1,4$ (air, $\mathrm{N}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ etc.)
$\mathrm{p}_{2} / \mathrm{p}_{1}=3$ for monoatomic gases $\mathrm{K}=1,67(\mathrm{He}, \mathrm{Ne}, \mathrm{Xe}, \mathrm{Ar}$ etc.)

Sizing - Multistage Compressors

Compression Ratio - Temperature

- Achieve higher pressures
- Needs to be cooled down between stages in order to avoid exceeding permissible temperature for compressor materials and lubricating oil.

Discharge temperature: $T_{d}=T_{s} *\left(\frac{p_{d}}{p_{s}}\right)^{\frac{\kappa-1}{\kappa}} \begin{array}{ll}\mathrm{Pd} \ldots \text { Discharge pressure } & \mathrm{PS} \ldots \text { Suction pressure } \\ \mathrm{Ts} \ldots \text { Suction temperature } \ldots \ldots \text { Isentropic coeff. }\end{array}$

Sizing - Multistage Compressors

Efficiency - Power Consumption

Sizing - Multistage Compressors

Example

Compression of Ethene from 1 to 8 bara, suction temperature $20^{\circ} \mathrm{C}$ (each stage), $\kappa=1.24$, clearance volume of each stage: 10% of swept volume, interstage pressure: 2.83 bara

Single-stage compressor	Multi-stage compressor
$T_{2}=T_{1} \cdot\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}=438^{\circ} \mathrm{K}=165^{\circ} \mathrm{C}$ $T_{2}=273 \cdot\left(\frac{3.16}{1}\right)^{\frac{1.24-1}{1.24}}=358^{\circ} \mathrm{K}$ $=85^{\circ} \mathrm{C}$ $\eta_{v o l}=1-\frac{V_{C}}{V_{S}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\kappa}}-1\right]=0.565$ $\eta_{v o l}=1-0.1\left[\left(\frac{2.828}{1}\right)^{\frac{1}{1.24}}-1\right]$ $=0.869$ Power consumption is 9\% lower	

Sizing - Valve Model

Flow through valve $=$ Isentropic flow through a nozzle

Effective Flow Area $A_{e f f}$ must be determined using CFD or experiments

Sizing - Method

- Thermodynamic System - Numerical Simulation of Compression Chamber:
- 0-, 1-, 2- or 3 dimensional model of compression chamber (conservation laws)
- Valve model
- Real gas equation of state or data base
- Heat transfer
- Model for losses (leakage, ventilation losses, flow through pipes)
- Motion of drive chain
- Mechanical Strength
- Dynamics of drive chain
- Vibration and pulsation study
- Tribology for sealing elements and rider rings

Summary

- A reciprocating compressor is the most efficient device to compress gas
- Although seemingly simple, a lot of fluid mechanics and thermodynamic knowledge is required
- For high pressures and low to high volume flows the reciprocating compressor is the best choice
- There is no substitute for the reciprocating compressor

