EFRC Training Workshop Design and operation of reciprocating compressors

Pulsations & Vibrations Leonard van Lier & André Eijk - TNO

EFRC Training Workshop

Outline

- Pulsations
- Vibrations
- Pulsation and vibration analysis according to API 618 standard, 5th edition

Why Pulsation & Vibration Analysis?

- Pulsations and vibrations should be minimized to avoid:
 - Integrity issues in piping (fatigue)
 - Increased wear of compressor parts
 - Increased power consumption
 - Flow metering errors
 - Hammering of check valves

EFRC Training Workshop

Pulsations

 Intrinsic feature of the reciprocating compressor

- Fluctuations of pressure and flow in the gas
- Occurs at suction and discharge side
- Strong interaction with the pipe system

September 23-24 2015

EFRC

Reciprocating, double-acting

EFRC Training Workshop

EFRC

Pulsation frequencies

- The frequency of pressure fluctuations is related to the *compressor speed*
- The pulsation spectrum contains the fundamental plus higher orders
- The frequency content of pulsations is essential for the propagation in pipe systems and interaction with the mechanical structure

Harmonic distribution

• Pulsation signal can be decomposed into the fundamental order plus higher orders:

$$p(t) = \sum_{i} A_{i} \sin\left(2\pi f_{i}t + \phi_{i}\right) \qquad \qquad f_{i} = i * \frac{RPM}{60}$$

- Example: compressor running at 480 rpm
- Fundamental frequency = 8 Hz
 - Higher orders: 16, 24, 32Hz ...

EFRC

Dominant spectral signatures

- Single-acting cylinder: 1st order + ...
- Double-acting cylinder: 2nd order + ...
- Unloaded cylinder: 1st order + ...
- Step-less capacity control: increased contribution at higher orders

Illustration

EFRC

Propagation

• Wave equation

$$\frac{\partial^2 p}{\partial t^2} - c^2 \frac{\partial^2 p}{\partial x^2} = 0$$

- Pulsations are acoustic waves, propagating at the speed-of-sound c
- Pulsations travel up- and downstream

Speed of sound

Increases with increasing T

$$c \sim \sqrt{T}$$

- Generally higher at discharge side than at suction side
- Decreases with increasing Molecular Weight
 - $CH_4 \sim 400 \text{ m/s}$
 - CO₂ ~ 260 m/s
 - H₂ ~ 1300 m/s

Wavelength

- Assume a harmonic source of frequency f
- Speed-of-sound c

• Example:

EFRC

• Acoustic wavelength $\lambda \sim \frac{c}{f}$

In general: λ>>D_{pipe}

Wave length

Plane waves

- If $\lambda >> D_{pipe}$: plane waves
- 1-dimensional acoustic theory
 - Engineering tools for pulsation analysis are generally based on this assumption
 - 1D theory fails for frequencies $f > 0.59 \text{*c/D}_i$
 - Reciprocating compressors generally obey 1D theory
 - Screw compressors may **not necessarily** obey 1D theory
 - Pulsations of turbo compressor do **not** obey 1D theory!

EFRC Training Workshop

Damping

- Damping mechanisms
 - Turbulence, wall friction, heat exchange with the wall, viscosity ...
- In general, damping is small
- Effective damping for L >> $10^*\lambda$
- Example: L >> 500 m
- Pulsations propagate over large distances!!

Reflection and transmission

 Acoustic waves reflect at 'discontinuities' in the piping

September 23-24

2015

- Diameter change
- Temperature change

EFRC Training Workshop

– Side branches

Interference of waves

Constructive / destructive interference

Acoustic resonance! and amplitude

EFRC Training Workshop

EFRC

Acoustic resonance

EFRC Training Workshop

Standing waves

 Maximum amplification occurs when the wavelength matches the pipe length

Standing waves

Standing wave ($\lambda/2$)

Shaking force on piping

- 20" header; L = 8.5 m,
- $P_0 = 200 \text{ bar}$
- p' = 1%
- F = 40 kN, @ 24 Hz

Also acting on elbows, reducers, tees ...

EFRC Training Workshop

Control of pulsation issues

Avoid coincidence of pulsation and resonance frequencies

Pulsation dampers

• Restriction orifice plates

EFRC Training Workshop

Pulsation dampers

- Mitigate the transfer of pulsations from the compressor to the piping,
- while reducing:
 - pulsations near compressor valves
 - Shaking forces on the damper
 - Pressure drop over damper

Restriction Orifice plates

- Mitigate the acoustic resonances in the piping
- Essential for performance:
 - Location in the pipe system
 - Pressure drop
 - Layout of the orifice (for higher frequencies)

Mechanical Vibrations

Mechanical Vibrations

- Why a mechanical vibration analysis?
 - Too high vibration and cyclic stress (fatigue) can occur, even in case pulsation levels are within the allowable levels: mechanical resonances
- What is a vibration?
 - A vibration is a more or less regular movement of a body as a function of *time*
- Examples:
 - Oscillating motor due to internal combustion
 - Oscillating flag stag due to the wind
 - Pipe vibrations caused by a reciprocating compressor (pulsation-induced shaking forces and mechanical loads)

Vibration Forms

- Non periodic:
 - A vibration which amplitude is not repeated
- Examples:

EFRC

- Opening of a relief valve
- Vibrations of a bridge due to traffic

- Periodic vibration:
 - Vibration whereby the amplitude is repeated after a discrete time period
- Examples:
 - Combustion forces in a cylinder
 - Unbalanced loads of reciprocating compressors
 - Pulsation-induced shaking forces

- Harmonic vibration
 - Vibration of which the amplitude is a sine
 - Can only occur when the excitation force exists of only one frequency component
- Example:
 - Unbalance of a rotor

- Two or more summed harmonic vibrations with different frequencies:
 - periodic vibration but not harmonic

Definitions of Vibrations

- Period (T):
 - The time after which the vibration repeats
- Frequency:
 - the reciprocal value of T (f=1/T) [Hz]
- Amplitude (X):
 - The maximum value of the sine over one period
- Phase angle:
 - the argument of the sine function as follows: $X = xsin(\omega t + \theta)$
- Circle frequency (ω):
 - $-\omega = 2\pi f$

Theory of Mechanical Vibrations

Theory of Mechanical Vibrations

Mode shape at resonance

Fatigue failure

Remark:

- In many cases the highest vibration levels occur at resonance conditions.
- However, high vibration levels may also be generated by high pulsationinduced shaking forces not occurring at resonance conditions.
- The distinction between both is difficult to determine. In many cases additional supports may only decrease the vibrations but will introduce high local stresses.

EFRC Training Workshop

Dynamic Forces generated by Reciprocating Compressors

 Pulsation-induced shaking forces (pulsation dampers, cylinders, pipe system, separators, coolers etc.)

Forces on dampers and cylinder

- Cylinder gas stretching forces
 - MNF of suction dampers and suction piping can be excited
 - Not only forces of 1X but also higher harmonics are important

Dynamic Forces generated by Reciprocating Compressors

• Free forces & moments caused by rotating and translating parts: Inertia force in piston direction:

Working principle of a crank mechanism

for multiple cylinders

EFRC

$$F_{x} = (m_{rec} + m_{rot})r\omega_{0}^{2}\cos\omega_{0}t + m_{rec}\frac{r^{2}}{L}\omega^{2}\cos2\omega_{0}t$$

Inertia force perpendicular to piston

$$Fy = m_{rot} r \omega_0^2 \sin \omega_0 t$$

In which:

- F_x : load in piston direction
- F_{y:} load perpendicular to piston
- m_{rec}: reciprocating mass
- m_{rot}: rotating mass
- r: stroke
- L: connection rod length
- ω_{0:} circular velocity
- t: time

Dynamic Forces generated by Reciprocating Compressors

<u>Vertical</u> crosshead forces

- important when supporting structures in vertical direction are flexible
- created when rotation motion is converted into reciprocating motion
- can be retrieved from crosshead pin load (horizontal direction)

Forces on crosshead

EFRC

Example of gas & inertia loads on crosshead pin (yellow line indicates total pin load)

Mechanical response analysis according to API 618

Example of an Underground Gas Storage (UGS) system

Challenges UGS systems:

- 1. Large variation in pressure ratio's and flows
- 2. Many unloading conditions:
 - HE unloaders, stepless flow reverse control
 - Variable speed

EFRC

Some examples of off-shore models

Challenges in offshore systems:

- Noise limitations in living quarters
- Space limitations
- Dead weight limitations
- Flexible deck structure

EFRC Training Workshop

Examples of Compressor Finite Element models

Mitigation Vibrations & Cyclic Stress Levels

- <u>Shifting resonances</u>:
 - frequencies of excitation forces should not coincide with mechanical natural frequencies

$$\omega_0 = \sqrt{k / m}$$

- Shifting to higher values by:
 - Additional pipe supports -
 - Stiffer pipe support structures
 - Difficult to achieve for variable speed compressor

- Shifting to lower values by:
 - Increasing mass

EFRC Training Workshop

Mitigation Vibrations & Cyclic Stress Levels

- Damping:
 - Most effective at resonance conditions
 - Viscous dampers (allow thermal motions)
 - Most effective for frequencies < 50 Hz

- Lower cyclic stress:
 - Increase wall thickness
 - Add braces

Pipe Supports

- Rigid clamps are required for systems which are subjected to vibrations
- Disadvantage of additional pipe clamps:
 - Introduction of too high expansion stresses
- Solution:

EFRC

- spring hold down supports

• Required spring preload:

Examples of spring hold down supports

- $Fn \ge \frac{Fw}{f}$ [N] F_w = pulsation-induced reaction force
 - = friction coefficient (0.3 steel-steel; 0.1 steel-teflon)

slot length

EFRC Training Workshop

API 618 Standard

- Specifies allowable pulsation, vibration & cyclic stress levels
- Stipulates a design approach

Absolute Discharge Pressure	Rated Power per Cylinder		
	Kw/cyl < 55 (hp/cyl < 75)	55 < Kw/cyl < 220 (75 < hp/cyl < 300)	220 < Kw/cyl (300 < hp/cyl)
P < 35 bar (P < 500 psi)	1	2	2
35 bar < P < 70 bar (500 psi < P < 1000 psi)	High po	wer, high pressure	3
70 bar $< P < 200$ bar (1000 psi $< P < 3000$ psi)	2	3	3
200 bar $< P < 350$ bar (3000 psi $< P < 5000$ psi)	3	3	3

EFRC Training Workshop

1) Acoustic evaluation & design of pulsation dampers

EFRC Training Workshop

2) Pulsation analysis of piping system

2015

- Forced mechanical response analysis
 Vibrations and cyclic stresses of:
 - Piping

EFRC

- Compressor manifold

4) Analysis of compressor valve dynamic behaviour

Max. opening imp. vel.= 2.4 [m/s] Max. closing imp. vel.= 0.2 [m/s] Max. absolute vel. = 2.5 [m/s]

September 23-24 2015

EFRC Training Workshop

Thank you for your attention! Questions ?

Leonard van Lier +31 888 666 317 Leonard.vanlier@tno.nl

EFRC Training Workshop

André Eijk +31 888 666 354 Andre.eijk@tno.nl

Encore: basic design rules (do's and dont's)

EFRC Training Workshop

Keep cylinder connection of pulsation damper as short as possible

Symmetric layout of cylinder connection in the damper compartment

EFRC Training Workshop

Manifold damper: Baffle plate or extended cylinder connection

EFRC Training Workshop

Avoid standing waves and Helmholtz resonance between vessels

EFRC Training Workshop

Avoid standing waves in closed side branches

EFRC Training Workshop

Minimize length between large vessel and damper

EFRC Training Workshop

Piping layout, clamps

EFRC Training Workshop

Minimise number of elbows and Tees and avoid freestanding elbows

Locate supporting directly under heavy components (valves, flanges etc.) and Tee joints

EFRC Training Workshop

Brace small lines (drains, purge lines) Do not use unreinforced branch connections Apply two-plane bracing of small bore side branches back to main pipe

Keep relief valves close to main line – Apply X-bracing in air cooler frames

24 2015

Avoid heavy valves at high elevation (also on top of separators)

EFRC Training Workshop

EFRC Training Workshop

Use full skirts in vessel supporting

EFRC Training Workshop

Avoid rod and constant load hangers

September 23-24 2015

EFRC Training Workshop

EFRC

Avoid unsupported overhanging weight

Do's, Don'ts Engineering Rules

Welds:

EFRC

- a) avoid weld imperfections
- b) apply full penetration welds
- c) avoid sharp corners (grind welds)

6 -remelted metal from second TIG run, 7 -HAZ from run ref (8)

- a) as welded
- b) after burr grinding
- c) after TIG dressing

EFRC Training Workshop

Use adequate grouting (epoxy resins)

EFRC Training Workshop