

EFRC Training Workshop Lubrication and Wear

Emissions related to wear of components Niek Albers – Howden Thomassen Compressors B.V. Rheden, The Netherlands

EFRC Conference Training

September 13, 2016

Introduction Emissions & Wear

- Wear of gas seals increases process gas leakage
- Process gas leakage results in emissions
 - Free atmospheric vent
 - Flare system
 - Vapor recovery system

Introduction Emissions & Wear

- Industry faces increasing pressure to reduce emissions from flaring and venting
 - Governments focus on reduction of greenhouse gas emissions (incl. CH₄!)
- Process gas leakage costs operators money
 - Most 'visible' when process gas is a sales product, e.g. natural gas compressions

Introduction Emissions & Wear

- Vapor recovery to reuse vent gas
 - Variable flow
 - Variable pressure
 - Variable molecular weight
 - "Dirty gas"
 - Often corrosive service
 - Liquid ring compressors
 - Screw compressors

Sources of emissions

- Static gas seals "don't" wear
 - O-rings
 - Gaskets
- Dynamic gas seals

 Piston rod packing
 Tail rod packing
 Actuator rod seals

Source: Parker Hannifin O-ring Handbook

Sources of emissions

EFRC Conference Training

Sources of emissions

EFRC Conference Training

Wear & emissions

- Piston rod packing leakage is correlated to piston rod diameter and discharge pressure and inversely correlated to gas molecular weight
- Leakage is fundamental to the operation of the piston rod packing
- Lubrication reduces leakage

Wear & emissions

Parameter		Leakage
Packing ring wear	1	1
Piston rod diameter	\uparrow	\uparrow
Discharge pressure	1	1
Gas molecular weight	\uparrow	\downarrow
Lubricated packing		\downarrow
Non-lubricated packing		\uparrow

Wear and emissions

- Normal leakage for lubricated piston rod packings ranges from 0.1 to 10.0 Nm³/hr
- Normal leakage for non-lubricated piston rod packings is generally 50% higher than for lubricated packings

Wear and emissions

 Piston rod packing leakage can increase by a factor 10 or more before the packing is considered worn

 Leakage range from 0.1 Nm³/hr up to 150 Nm³/hr in case of severe wear!

Wear and emissions

- Condition monitoring of packing typically by vent gas temperature measurement
- In-line leakage flow measurement is difficult
 - High accuracy required for lower flow rates
 - Vent line shall be free of obstructions in case of high flow rate (safety!)

- API 618, 5th edition
 - Purpose of Distance Piece Vent, Drain and Buffer systems includes atmospheric fugitive emission control
 - If specified, to reduce process gas emissions to an absolute minimum, the cylinder pressure packing shall include venting and buffer gas cups with side-loaded packing rings in the adjacent cups.

TYPE D

EFRC Conference Training

Source: API 618, 5th edition

EFRC Conference Training

EFRC

September 13, 2016 15

- Buffer
 - Reduce process
 gas emissions
- Drain
 - Separate liquids
- Vent

EFRC

Controlled
 handling of
 residual emissions

TYPE D

Type C/D double compartment distance piece

EFRC Conference Training

EFRC

September 13, 2016 18

EFRC

EFRC Conference Training

September 13, 2016 20

- Buffer gas pressure regulator
- Buffer gas flow meters to individual seals and compartments

- Drain collecting
 lines
- Liquid collecting pot
- Vent line

- USA
 - EPA: Environmental Protection Agency
 - NSPS OOOO and OOOOa rules
 - Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commence After September 18, 2015
 - Covers volatile organic compounds as well as methane emissions

The Natural Gas Production Industry

Natural gas systems encompass wells, gas gathering and processing facilities, storage, and transmission and distribution pipelines.

EFRC Conference Training

EFRC

- Mandatory periodical rod packing replacement
 - After 26.000 operating hours
 - After 36 months from last replacement
- Or collect leak gas through a closed vent system operating at a subatmospheric pressure

- EU
 - High level sectoral emission reduction objectives defined
 - Currently no EU legislation applicable
 - Indirect reduction via EU Emission Trading Scheme, limiting CO₂ emission from flares
 - Reduction measures occasionally being imposed through license to operate

- Trends & outlook
 - Piston rod packing development targeting 'zero' emissions
 - Increased focus on reduction of greenhouse gas emissions (incl. methane)
 - Increased focus on reduction of flaring
 - 'zero routine flaring' for oil fields
 - EPA refinery emissions rules
 - Global Gas Flaring Reduction partnership

Conclusion

- Piston rod packing is the main source of process gas leakage
- Process gas leakage depends on a number of factors and can very significantly
- A well designed vent, drain and buffer system can prevent leakage from becoming emission

EFRC

Questions

EFRC Conference Training

September 13, 2016 29